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ABSTRACT
We propose a “backtracking” mechanism within Tully’s fewest switches surface hopping (FSSH) algorithm, whereby whenever one detects
consecutive (double) hops during a short period of time, one simply rewinds the dynamics backward in time. In doing so, one reduces the
number of hopping events and comes closer to a truly fewest switches surface hopping approach with independent trajectories. With this
algorithmic change, we demonstrate that surface hopping can be reasonably accurate for nuclear dynamics in a multidimensional configu-
ration space with a complex-valued (i.e., not real-valued) electronic Hamiltonian; without this adjustment, surface hopping often fails. The
added computational cost is marginal. Future research will be needed to assess whether or not this backtracking correction can improve the
accuracy of a typical FSSH calculation with a real-valued electronic Hamiltonian (that ignores spin).

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022436., s

I. INTRODUCTION

Fewest switches surface hopping (FSSH)1 is a popular brand
of nonadiabatic dynamics due to its low cost, decent accu-
racy, and straightforward implementation.2 For the most part,
the algorithm is able to model branching ratios for molecu-
lar Hamiltonians and recover reasonable time scales of elec-
tronic relaxation, all while thermal equilibrium with detailed bal-
ance is maintained more or less.3,4 As such, the algorithm is
widely used today to simulated photo-excited dynamics,5 electron
transfer6,7 and transport,8 and passage through conical intersec-
tions;9,10 Tully’s original article1 is cited more than 150 times each
year, and software interfaces for FSSH dynamics are now widely
available.11

Of course, the FSSH algorithm does have some well-known
failures, especially the issue of decoherence: The original algorithm
did not account fully for wavepacket separation.12 That being said,
over the past two decades, many researchers have investigated the
decoherence problem, and a range of solutions have been presented
that can largely solve this problem in practice.2,13–26 Another prob-
lem with FSSH is the issue of recoherences27—FSSH cannot model
wavepacket separation followed by wavepacket recombination. This
subtle, truly quantum effect is (for the most part) unsolvable by any
classical algorithm; the hope has always been that such subtle effects

can often be ignored for many practical problems, especially in the
condensed phase.

Now, one case of interest is entirely missing from the discus-
sion above: the case of complex-valued (i.e., not real-valued) Hamil-
tonians. Such Hamiltonians arise when one allows for spin–orbit
interactions, and in such a case, it is well known28 that for a sys-
tem with an odd number of electrons, the electronic Hamiltonian
cannot be made real-valued. Furthermore, recently, the suggestion
has been made29–31 that nonadiabatic effects arising from spin–orbit
interactions can lead to spin-separation and may well be responsible
for the perplexing chiral induced spin-selectivity (CISS) effect that
has been reported by Waldeck and Naaman and co-workers.32–34 For
this reason, one would like to model coupled nuclear-spin dynamics
with FSSH. As designed by Tully, however, the original FSSH was
not conceived with complex-valued Hamiltonians in mind. After
all, one of the signature ideas of surface hopping is the notion of
momentum rescaling: Whenever a hop is accepted within the FSSH
algorithm, one rescales momentum in the direction of the deriva-
tive coupling d (which, therefore, is required to be real-valued).
Hence, one must wonder: For a complex-valued Hamiltonian, how
should one choose the necessarily real-valued direction of momen-
tum rescaling? Re(d)? Im(d)? Some linear combination? With this
quandary in mind, in a recent article, we made a preliminary explo-
ration of complex FSSH dynamics.35 Our preliminary conclusions
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were that, for some problems, FSSH could be reasonably accurate if
(i) one guessed the correct rescaling direction and (ii) one explic-
itly included Berry force36,37 effects. That being said, the data in
Ref. 35 also demonstrated that if the Berry force effects were large
enough, FSSH usually just failed entirely. At the time, we assumed
that such failures were simply the result of error building up within
an imperfect semi-classical algorithm.

In this communication, we will actually show that, within the
context of multi-dimensional nonadiabatic dynamics with com-
plex Hamiltonians, sometimes the failures of FSSH do not arise
from any intrinsic quantum features, but rather just the pres-
ence of too many consecutive (or double) hops back and forth
occurring in a region of nonadiabatic coupling. Moreover, we will
prove that, at least within a small test set of model problems, this
FSSH error can usually be corrected by “backtracking,” i.e., mov-
ing trajectories backward in time if certain criteria are met. This
solution requires a negligible computational cost while leading to
more accurate electronic branching ratios and far more accurate
nuclear momenta. Moreover, although we have come upon this
non-Markovian adjustment to surface hopping as a necessary cor-
rection for simulating dynamics with a complex-valued Hamil-
tonian, it is possible that this subtle algorithmic change will be
effective for multi-dimensional real-valued electronic Hamiltonians
as well.

This communication is structured as follows: In Sec. II, we
review the FSSH algorithm for both real-valued and complex-valued
electronic Hamiltonians. We then explain why standard FSSH fails
for multi-dimensional complex dynamics as a motivation for intro-
ducing the backtracking adjustment. In Sec. III, we present some
simulation results for the simplest two-dimensional (2-D) complex-
valued electronic Hamiltonian, which will demonstrate the efficacy
of the backtracking adjustment—especially in the limit of large Berry
forces. In Sec. IV, we discuss further the notion of backtracking,
making connections to other related algorithms, and hypothesizing
about the notion of backtracking for real-valued electronic Hamil-
tonians. We conclude in Sec. V. Henceforward, as far as nota-
tion, we will denote all multidimensional nuclear vectors with bold
characters, i.e., p.

II. METHOD
A. FSSH review

We begin by briefly reviewing the normal FSSH algorithm,
as well as its extension to systems with complex-valued electronic
Hamiltonians. For a more complete description, many references are
available.12,38,39

Within a FSSH simulation, each trajectory is assigned an
“active” adiabatic surface j. The nuclear degrees of freedom are
propagated adiabatically along a given adiabatic surface, while the
electronic part is evolved according to the electronic Schrödinger
equation,

ṙ = p/m,
ṗ = −∇Ej(r),

ċk = −
iEk(r)ck

h̵
−∑

l

p ⋅ dkl(r)cl
m

for k = 0, 1, . . . .
(1)

Here, Ek (Ej) is the kth (jth) potential energy surface, and dkl is the
derivative coupling between surfaces k and l. To account for non-
adiabaticity, according to Tully,1 at each time step, an FSSH trajec-
tory should switch from one adiabatic surface (j) to another surface
(k) with probability

Pj→k = max [0,−2Re((
p
m
⋅ dkj)

ρjk
ρjj

Δt)],

ρlm ≡ clc
∗
m.

(2)

If a hop is attempted, one must rescale the trajectory’s nuclear
momentum along a certain direction to conserve the total system
energy. We note that an attempted hop upward may be frustrated if
the nuclear momentum is too small to accommodate the change in
potential energy.2,40

B. FSSH nuances that are highlighted with
complex-valued electronic Hamiltonians

Now, for a real-valued Hamiltonian, the rescaling direction
is unambiguously the direction of the derivative coupling djk.
This choice can be justified semiclassically through a scattering
approach41 as well as through a simple reading of the quantum–
classical Liouville equation.42–44 However, for the case of a complex-
valued Hamiltonian—for example, what one might encounter
with spin-orbit coupling—the situation becomes far more difficult
because the rescaling direction is not straight-forward to discern.
The equations are necessarily more involved, and we are unaware
of a rigorous assignment of the rescaling direction nor have we
been able to construct such an assignment ourselves. In practice, to
date,35 we have investigated two different approaches including (i)
a vector that depends on the momentum (Re∑k≠j[djk

p⋅dkj
m ]) and (ii)

other intuitive (but ad hoc) vector quantities that depend only on the
electronic Hamiltonian.

Besides the question of hops between surfaces, there is another
hiccup to using FSSH in the presence of a complex-valued Hamil-
tonian. In the limit of slow adiabatic nuclear dynamics, because of
the changing phase of the adiabatic electronic states,28,45,46 nuclei
moving on surface j experience what Berry36 has called a geometric
magnetic field of the form

FB
j = 2h̵Im∑

k≠j
[djk

p ⋅ dkj
m
]. (3)

Note that the Berry force above will diverge to infinity in the nona-
diabatic limit, e.g., at a conical intersection. The standard FSSH
dynamics do not include this built-in magnetic field during prop-
agation, and so Eq. (3) must be included when we extrapolate FSSH
to the case of complex-valued electronic Hamiltonians.

In the end, from the discussion above, one finds that, in a spatial
region of strong nonadiabaticity, provided that there is a complex-
valued electronic Hamiltonian, there are two competing factors: (i)
a strong magnetic field whose magnitude and direction depend on
the adiabatic surface and (ii) a strong desire to switch adiabatic sur-
faces. The effects are clearly not compatible with each other. To
better understand the exact problem, consider the following situa-
tion, as visualized in Fig. 1. We imagine a wavepacket approaching
an avoided crossing for which the Berry force is very strong. Sup-
pose that according to FSSH, one should hop from state 1 to state 0
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FIG. 1. A visualization of the consecutive (or double) hopping situation. A trajectory
first switches from adiabat 1 to adiabat 0 at t0 and then switches back quickly from
adiabat 0 to adiabat 1 at t0 + T. During the time period [t0, t0 + T ], according to the
standard FSSH, the trajectory responds to Berry force FB

0 . However, according to
FSSH with backtracking, during this time period, the trajectory will respond instead
to Berry force FB

1 (and, also during this time period, no hops will be allowed to
surface 0).

at time t0 and then hop back from state 0 to state 1 at time t0 + T. In
such a case, during the time interval [t0, t0 + T], FSSH dynamics will
move a nuclear trajectory along adiabat 0 with the corresponding
Berry force FB

0 . However, because of the subsequent hop back up to
surface 1, one could reasonably argue that this is the wrong physics.
Instead, during the time interval [t0, t0 + T], one should really move
a nuclear trajectory along adiabat 1 with the corresponding Berry
force FB

1 . Thus, FSSH dynamics are set up for failure because of the
presence of too many hops back and forth.

C. Backtracking correction
If the analysis is qualitatively correct, there should be a sim-

ple fix to the FSSH algorithm worth exploring. If the problem is
indeed the presence of too many hops back and forth, why not just
correct trajectories that hop more than once within a short time
period?

In practice, this notion leads to what we will refer to as “back-
tracking.” Within such a backtracking approach, one makes the fol-
lowing change to the FSSH algorithm: Suppose that the trajectory
hops from state j to state k at time t0, and attempts to hop back (no
matter whether frustrated or not) from state k to state j after a short
time period T (so that t0 + T is the time of the second hop). In such
a case, we will rewind (i.e., bring back) the trajectory to its original
position, momentum, electronic amplitude, and adiabatic surface (j)
just before the initial hop at time t0. Furthermore, we will then for-
bid this trajectory from hopping to state (k) within the next period of
time T. Obviously, this backtracking prescription requires the defi-
nition of “a short time period,” but to that end, the energy gap is the
perfect criterion. Thus, we will rewind a hop if we find that time T
for a consecutive (double) hop satisfies

T <
2πh̵
ΔẼ

. (4)

Here, ΔẼ is the maximum energy gap as encountered by the trajec-
tory after the initial hop from j to k at time t0. In other words, after
every FSSH hop (say, from j to k), one needs to keep track of the

maximum energy gap |Ej − Ek| (as a function of time) that the
trajectory experiences.

The backtracking mechanism above will clearly eliminate some
redundant double hops between surfaces within the FSSH algo-
rithm. Moreover, in a moment, we will show that by eliminat-
ing such redundant hops, one clearly corrects the FSSH algo-
rithm for the case of complex-valued electronic Hamiltonians,
finding far more accuracy than was possible heretofore. We will dis-
cuss the broader possibilities and potential dangers of backtracking
in Sec. IV.

III. RESULTS
For our model problem, we will work with the same 2-

dimensional complex-valued Hamiltonian as studied in Ref. 35. This
model assumes flat (i.e., constant) adiabatic potential energies such
that one can cleanly isolate the effect of switching surfaces. In the xy
plane, we imagine an avoided crossing in the x-direction modulated
by a diabatic coupling that changes sign in the y-direction,

H ≡ A[− cos θ sin θeiϕ

sin θeiϕ cos θ
],

θ ≡
π
2
(erf (Bx) + 1),

ϕ ≡Wy.

(5)

We set B = 3.0 a.u., and we fix the mass of the incoming particle as
m = 1000 a.u. For this model problem, we have already established
empirically35 that the optimal direction for momentum rescaling is
simply the x-direction. Note, however, that the effect of backtrack-
ing as described below should be consistent using other rescaling
schemes as well. For instance, for the case that we rescale in the
direction Re[djk

p⋅dkj
m ], we show similar results in the supplementary

material.
We imagine an incoming wavepacket arriving from the left

on the upper adiabatic surface in the form of a Gaussian, Ψ(r, 0)

= exp(− (x+3)2

4σ2
x
−

y2

4σ2
y

+ ip0 ⋅ r)∣u⟩, where ∣u⟩ represents the upper

adiabatic electronic state and σx = σy = 0.5. Note that, asymptoti-
cally, the diabats and adiabats are equivalent in the limit x → −∞
such that this initialization is easy to implement. As far as initializ-
ing our FSSH dynamics, all trajectories are sampled from the Wigner
conditions corresponding to Ψ(r, 0), i.e., positions are sampled from
a Gaussian distribution centered x0 = −3, y0 = 0 with standard devi-
ations σx = σy = 0.5 and momenta are sampled from Gaussian dis-
tribution centered at p0 with standard deviations σpx = σpy = 1. We
study three choices for the energy gap A: 0.02, 0.05, and 0.1. For a
given velocity, when A is large, we expect adiabatic dynamics; when
A is small, we expect nonadiabatic dynamics.

At the end of each FSSH simulation, we extract scatter-
ing populations as well as the average momentum on each adi-
abatic surface. As far as the exact dynamics are concerned, we
propagate that all dynamics use the fast Fourier transform tech-
nique47 on a 2D grid using the same grid parameters as in
Ref. 35.

In Fig. 2, we begin our analysis by plotting the transmitted
population and momentum distribution results on each adiabatic
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FIG. 2. Transmitted populations and
momenta distribution as a function of
initial incoming momentum, px . Here,
W = 5, and for initial conditions, we
set py = px . For this dataset, although
backtracking results are slightly worse
than the original FSSH algorithm for pop-
ulation at intermediate momenta p0 ∈

[16, 20] for the case A = 0.05, over-
all the process of backtracking makes a
huge improvement as far the momentum
results for all incoming conditions. In par-
ticular, backtracking leads to a dramatic
improvement in the population results at
low momentum for the case A = 0.02.
Overall, backtracking is clearly essential
for capturing the qualitative shapes of the
branching ratios and accurate momen-
tum distributions.

surface as a function of initial momentum, px. For parameters, we
let W = 5 [which reflects how important the complex-valued nature
of the Hamiltonian will be (i.e., how strong the Berry force will be)],
and we choose py = px. For this Hamiltonian and this set of initial
conditions, the Berry force in Eq. (3) will tend to promote reflection.
We plot the transmitted populations on the different adiabatic states,
as well as the x and y momenta (state-resolved) on the different adi-
abatic states. We begin our analysis by studying the A = 0.02 and
A = 0.05 cases, which correspond to the more nonadiabatic flavor of

dynamics. Here, we find that (as was found in Ref. 35) the standard
FSSH (with Berry force included) misses a large portion of reflected
population. In particular, note the erroneous yellow curve (FSSH
adiab 1) for A = 0.02 at low incoming momentum (A = 0.02). By
contrast, as soon as we add backtracking, the overall error appears
minimized, both as far as populations and momentum distribution
for both surfaces; the corrections to the momentum distribution
are quite noteworthy. To understand the underlying dynamics here,
note that when the particles move along adiabat 1, the underlying

FIG. 3. Reflected population and
momenta distribution as a function of
initial px . Here, W = 5, and for initial con-
ditions, we set py = px . For this dataset,
backtracking again largely fixes the
errors of the standard FSSH algorithm,
especially the outgoing momenta. As far
as the population results are concerned,
backtracking slightly outperforms the
standard FSSH when A = 0.10 and
slightly underperforms when A = 0.05.
Most interestingly, when A = 0.02,
backtracking predicts roughly the correct
amount of reflection, while the standard
FSSH does not predict any reflection.
However, strangely, FSSH with back-
tracking apparently inverts the reflection
on adiabats 0 and 1. This bizarre failure
will be discussed in Sec. IV.
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FIG. 4. Same as Fig. 2, but with initial
py = 0. Here, both algorithms recover
accurate transmission probabilities, but
only inclusion of the backtracking adjust-
ment yields accurate outgoing momen-
tum distributions.

Berry force is in the direction of reflection. However, when the par-
ticles move along adiabat 0, the underlying Berry force is in the
direction of transmission. Obviously, if a particle hops twice, the
particle will feel dramatically different forces, leading to confusion
and incorrect outgoing probabilities (i.e., too much transmission).
By contrast, by backtracking, one forces the trajectories to hop as
few times as possible and one does recover the correct probability of
transmission.

Now, if one looks carefully, one does note that backtrack-
ing does slightly degrade the accuracy of the population data at
intermediate momenta, especially in the case A = 0.05. Neverthe-
less, qualitatively, the dynamics are clearly improved overall with
backtracking. Furthermore, turning to the case A = 0.10, we find
that while the standard FSSH alone can correctly predict popula-
tion distribution, the inclusion of backtracking slightly improves
the population results and strongly improves the momentum
results.

Next, in Fig. 3, we turn our attention to the case of reflection
for the same conditions as above. For the cases A = 0.05 and A =
0.10, FSSH with backtracking agrees with the exact results better
than does the standard FSSH, especially for the momentum distri-
bution. Interestingly, for the A = 0.02 case, we notice that FSSH does
not agree with the exact dynamics but rather shows a strange inver-
sion: While exact dynamics predict that the reflected population on
adiabat 0 is larger than the reflected population on adiabat 1, FSSH
with backtracking predicts the opposite (i.e., FSSH predicts that the
reflected population on adiabat 1 is larger than the reflected pop-
ulation on adiabat 0) with both magnitudes switched. This FSSH
failure will be analyzed in Sec. IV as one potential pitfall of the
method. Overall, though, it is clear that as compared with the stan-
dard FSSH, backtracking clearly leads to strong improvements. After
all, in the limit A = 0.02, the standard FSSH does not predict any
reflection at all.

Finally, we have also run simulations for the case of initializa-
tion with py = 0. In Fig. 4, we plot only transmission results, as these
initial conditions do not predict any reflection. From these figures, it
is clear that FSSH with backtracking and standard FSSH both yield
the correct populations, but (as above) only backtracking yields the
correct outgoing momenta.

Overall, the data here are clear: By including backtracking,
FSSH can (at least qualitatively) recover exact data; without back-
tracking, the standard FSSH will encounter large problems if the
Berry force is large and momenta are small.

IV. DISCUSSION: FUTURE POSSIBILITIES
AND POTENTIAL CAVEATS

The data above have demonstrated that, with the inclusion of
backtracking, the accuracy of the FSSH algorithm can be improved,
sometimes dramatically. For the case of a complex-valued Hamil-
tonian with large Berry forces, as we conjectured in Sec. II C, the
basic problem of FSSH is that one does not know when to hop.
Indeed, one can find multiple hops, back and forth, between the
same pair of surfaces. Presumably, in one dimension, such effects
should not be important, and in preliminary test data (not shown),
we have found that backtracking makes no difference when studying
one dimensional test cases, e.g., the original Tully model problems
from Ref. 1. Nevertheless, in many dimensions, if the forces are very
different on the different surfaces, it is clear that a transient hop
can dramatically affect the overall course of a simulation, sending
trajectories in very incorrect directions in the meantime and ruin-
ing the premise of an FSSH calculation. Of course, the problem
above need not be limited to complex-valued electronic Hamilto-
nians. For real-valued electronic Hamiltonians, different adiabatic
surfaces should also have very different forces. Hence, one must
wonder whether a backtracking correction will be helpful when
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running FSSH dynamics in general; this poses one very interesting
avenue for future research.

Now, while we hope that the backtracking approach posed here
will appeal to many theorists/computationalists, we are aware that,
in practice, this approach may also appear unsettling. After all, the
backtracking procedure proposed above involves going backward in
time in a very non-Markovian sense. If this approach is unsettling,
we must mention that the notion of rewinding a trajectory back-
ward is hardly new. As far back as Preston and Tully’s first paper on
surface hopping,48 one operated under the premise that one could
find a crossing and then step backward to initialize hops just as the
crossing point. Similarly, more recently, Martinez et al. consistently
used a rewinding of sorts when running ab initio multiple spawn-
ing (AIMS):49–51 within AIMS, when one finds regions of nonadia-
batic coupling, one must always rewind a trajectory with spawned
basis functions to a time before the crossing occurs. In this sense,
one might think of the present backtracking approach as another
step in the direction of merging FSSH and AIMS. Finally, within
the context of FSSH dynamics, Truhlar and co-workers previously
proposed the notion of fewest switches with time uncertainty39,52

(FSTU), whereby a frustrated hop at time t0 will be activated at
time t0 + T if T is small enough. Although FSTU and backtrack-
ing have different goals in mind, there is clearly a parallel between
both the approaches in the sense that both introduce some new
non-Markovian effects.

Now, the implications above are exciting, and yet given the
success of Tully’s standard algorithm and the fact that we are now
proposing to add a new non-Markovian element into the original
FSSH algorithm, one must also be cautious before incorporating
such a backtracking correction within bread and butter calcula-
tions.

● First, one potential cause for concern is the question of
whether or not incorporating backtracking will eventually
ruin the surface-amplitude consistency of surface hopping.
In other words, the premise of surface hopping has always
been that there will be a hypothetical equivalence between
the fraction of particles on adiabat j and the square of
the jth amplitude, |cj|2; to test whether backtracking intro-
duces problems, future work will need to investigate detailed
balance.

● Second, one might also wonder how decoherence correc-
tions interface with backtracking? After all, when amplitude-
surface consistency is broken, FSSH tends to need a decoher-
ence correction.53

● Third, one can also ponder whether backtracking introduces
any meaningful correction (at all) in the presence of friction?
In such a case, is it possible that there will be no consecutive
(double) hops within a small window? If so, would that mean
that the standard FSSH would work better or worse? Usually,
FSSH works best with friction,44 but would that be true with
complex-valued Hamiltonians?

● Fourth, in this article, we have dealt with the state of affairs
when there are only two electronic states; one must ask how
to generalize this approach to the case of many electronic
states. Presumably, one would simply backtrack or rewind
after consecutive (double) hops between any pair of states,
but this simple interpretation will need to be checked.

● Fifth, for the present article, we have dealt exclusively with
the case whereby the initial wavepacket is on the excited
state and we have worried about the case that we hop down
to the ground state at time t0 and we hop back up at a
time t0 + T. What if the opposite were to occur, and we
were to start on the ground state and then first hop up
and then hop down? Would the physics of backtracking be
any different? On this point, an interesting nuance arises.
After a double hop is detected between times t0 and t0 + T,
according to the procedure outlined above, we rewind the
trajectory to time t0 and do not allow any additional hops
until time t0 + T. The rational for this “no-hopping period”
is that during this time period, the particle will traverse
the crossing region. Yet, because of momentum rescaling,
in the absence of friction, a trajectory will necessarily pass
through the crossing region with a different velocity depend-
ing on whether or not it traverses along the higher or
lower adiabatic state: in particular, the velocity along the
excited state should be smaller than the velocity along the
ground state by a simple energy-conservation argument.
Thus, one might wonder if the “no-hopping time period”
should be different for up-down vs down-up consecutive
(double) hops? Should up-down double hops be matched
with shorter no-hopping periods, while down-up double
hops should be matched with longer no-hopping periods?
To this end, in the supplementary material, we plot the
results for the model above using a no-hopping period of 2T,
and we show that the scattering results do actually improve
with such an increased no-hopping period. In short, if one
decides to walk down that path, there may be room for
some optimization or parameterization of the backtracking
algorithm.

● Finally, backtracking cannot solve all of FSSH’s problems. In
particular, as described in Ref. 27, the recoherence problem
in FSSH certainly remains and is not addressed by back-
tracking. Moreover, as the reflection data show in Fig. 3
(A = 0.02), if the Berry force is large enough, backtracking
cannot match exact data for reflection branching ratios. To
better understand this figure, note that the FSSH data are
easy to interpret. According to FSSH, if a trajectory moves
along adiabat 1, one reflects; if a trajectory moves along
adiabat 0, one transmits. Therefore, following the standard
intuition, FSSH with backtracking predicts that most trajec-
tories that reflect will be on the upper diabat. By contrast, in
order to explain the exact reflection data in Fig. 3 (A = 0.02)
heuristically, one must surmise that the optimal semiclas-
sical trajectories must depend very sensitively on the exact
location of the hopping: If the incoming wavepacket stays
on adiabat 1 just long enough so that it begins to reflect, then
the wavepacket hops at just the right time, presumably, one
will recover the exact branching ratios with more reflected
population on adiabat 0. In practice, however, it appears that
FSSH with backtracking is still simply too crude to recover
this effect using a “no-hopping” rule for time T. Hence, one
may ask: Is it clear when backtracking can salvage FSSH and
when FSSH is unsalvageable?

All of these questions need to be addressed in the future.
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V. CONCLUSION
In summary, we have proposed incorporating a simple back-

tracking adjustment inside the FSSH algorithm, whereby whenever
one encounters consecutive hops (back and forth) within a short
time window, one simply rewinds the trajectory to the first hop and
then proceeds without any hopping for some prescribed period of
time. For our purposes, we have guessed that a short time window
can be chosen as the inverse of the adiabatic energy gap. With this
ansatz, we have shown that such a backtracking approach eliminates
consecutive (double) hops for a trajectory going through a region
with a strong derivative coupling. We have also shown that incorpo-
rating backtracking can lead to strongly improved results for mul-
tidimensional scattering calculations with complex-valued Hamil-
tonians, where the urge to hop is incompatible with a Berry force,
which leads to big problems for the standard FSSH approach. How-
ever, if we invoke backtracking, we can indeed recover reasonably
accurate branching ratios and outgoing momentum distributions.
With regard to computational cost, the backtracking adjustment
requires only a marginal expense and the dynamics are completely
stable.

Looking forward, there are many tests ahead for this non-
Markovian adjustment to the FSSH algorithm. We will need to run
many multi-dimensional applications and model problems to learn
exactly when consecutive (double) hops emerge as a gross prob-
lem for FSSH dynamics: Do these problems arise only for complex-
valued Hamiltonians or also for real-valued Hamiltonians? We will
also need to investigate whether or not the present backtracking
approach proves to be a robust solution to the consecutive (dou-
ble) hop problem, i.e., is it possible the present case is just too
easy to solve? Answering these questions should yield very use-
ful information (and intuition) about the nature of nonadiabatic
molecular dynamics going forward and perhaps form a fundamental
adjustment to the standard FSSH algorithm.

SUPPLEMENTARY MATERIAL

See the supplementary material for the scattering results for
different rescaling directions as well as different definitions of the
“no-hopping” time period.
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