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ABSTRACT
Within the context of fewest-switch surface hopping (FSSH) dynamics, one often wishes to remove the angular component of the derivative
coupling between states ∣J⟩ and ∣K⟩. In a previous set of papers, Shu et al. [J. Phys. Chem. Lett. 11, 1135–1140 (2020)] posited one approach
for such a removal based on direct projection, while we isolated a second approach by constructing and differentiating a rotationally invariant
basis. Unfortunately, neither approach was able to demonstrate a one-electron operator Ô whose matrix element ⟨J∣Ô∣K⟩was the angular com-
ponent of the derivative coupling. Here, we show that a one-electron operator can, in fact, be constructed efficiently in a semi-local fashion.
The present results yield physical insight into designing new surface hopping algorithms and are of immediate use for FSSH calculations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0192083

I. INTRODUCTION: SURFACE HOPPING
AND LINEAR/ANGULAR MOMENTUM CONSERVATION

Currently, surface hopping is the most popular mixed
quantum–classical algorithm for propagating nonadiabatic
dynamics,1,2 offering a reasonable balance between speed and
accuracy, while also roughly recovering the correct equilibrium
density distribution.3,4 The essence of the algorithm is to follow
dynamics along adiabats, with occasional jumps between adiabats
so as to account for electronic relaxation. Importantly, by propa-
gating along adiabats, the algorithm automatically conserves the
total energy. That being said, the standard fewest-switch surface
hopping (FSSH) algorithm does not conserve linear momentum,5
a failure that has been addressed before in the literature; angular
momentum is also not conserved,6–8 although this problem is much
less well appreciated and discussed (except in the context of exact
factorization approaches9–11 or problems with a Coriolis force12).

Momentum conservation fails within FSSH because when a tra-
jectory hops between electronic states, the fundamental ansatz of
surface hopping is that the momentum rescaling (between states ∣J⟩
and ∣K⟩) should occur along the derivative coupling direction dJK
between these two states,

dAα
JK = ⟨J∣

∂

∂XAα
∣K⟩. (1)

Here and below, we use A, B, C to index nuclei; I, J, K to index adia-
batic electronic states; and α, β, γ to index an x, y, z Cartesian direc-
tion. [Although not present in Eq. (1), it should also be noted that
three dimensional vectors are written in a bold font; μ, ν, λ, σ index
atomic orbitals ∣χμ⟩, ∣χν⟩, ∣χλ⟩, ∣χσ⟩, respectively.] Now, the nature of
the derivative couplings as a function of translation and rotation
has been studied in the past.5 In short, when dealing with the stan-
dard electronic Hamiltonian (i.e., without spin-orbital coupling),
the usual phase conventions13 are that the nuclei and electrons are
translated together (so that the total wave function is real valued).
Mathematically, this means that we choose the phase of state ∣K⟩ to
follow

(P̂e + P̂N)∣K⟩ = 0, (2)

(L̂e + L̂N)∣K⟩ = 0, (3)

where P̂e and P̂N are electronic and nuclear linear momentum oper-
ators, respectively; L̂e and L̂N are electronic and nuclear angular
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momentum operators, respectively. If one operates by ⟨J∣, we can
then automatically find that

⟨J∣P̂e∣K⟩ + ⟨J∣P̂N ∣K⟩ = 0, (4)

⟨J∣L̂e∣K⟩ + ⟨J∣L̂N ∣K⟩ = 0. (5)

These expressions can also be written as

⟨J∣P̂e∣K⟩ +
h̵
i∑A
⟨J∣

∂

∂XA
∣K⟩ = ⟨J∣P̂e∣K⟩ +

h̵
i∑A

dA
JK = 0, (6)

⟨J∣L̂e∣K⟩ +
h̵
i∑A

XA × ⟨J∣
∂

∂XA
∣K⟩

= ⟨J∣L̂e∣K⟩ +
h̵
i∑A

XA × dA
JK = 0, (7)

where “×” represents the cross product. Thus, at the end of the day,
rescaling the classical nuclear momentum by d,

PA
final = P A

initial + αdA, (8)

must lead to a violation of linear conservation insofar as

∑
A

PA
final =∑

A
P A

initial +
α⟨J∣P̂e∣K⟩

ih̵
≠∑

A
P A

initial. (9)

At bottom, nuclear displacement drags the electrons (which yield a
small change in the total momentum). Similar statements also hold
for angular momentum.

For linear and angular momentum conservation, the most
natural approach is to modify the rescaling direction by

PA
final = P A

initial + α(dA
− ΓA
), (10)

where Γ satisfies

∑
A

ΓA
JK =

pJK

ih̵
, (11)

∑
A

XA × ΓA
JK =

lJK

ih̵
. (12)

Here, pJK and lJK are the electronic linear and angular momentum
matrix elements between states ∣J⟩ and ∣K⟩, respectively. In practice,
one often decomposes

Γ = Γ′ + Γ′′,

where Γ′ is the electron translation factor (ETF) and Γ′′ is the
electron rotation factor (ERF).

Now, as written above, the Γ′ and Γ′′ tensors are matrices
in a vector space composed of many-body electronic wave func-
tions, ∣J⟩, ∣K⟩, i.e., Γ = ΓJK . In practice, working with such matrices
is quite difficult, and it would be much better if one could fashion
these matrices as one-electron operators (in an atomic orbital basis)
instead. In other words, rather than constructing Γ′JK and Γ′′JK above,

it would be extremely convenient if we could define operators Γ′μν
and Γ′′μν and thereafter evaluate the following matrices:

Γ′JK =∑
μν

Γ′μνD JK
νμ , (13)

Γ′′JK =∑
μν

Γ′′μνD JK
νμ . (14)

Here, D JK
μν is the one-electron transition density matrix between

states ∣J⟩ and ∣K⟩. Since pJK = ∑μν pμνD JK
μν and lJK = ∑μν lμνD JK

μν , the
simplest means to satisfy Eqs. (11) and (12) [given the definitions in
Eqs. (13) and (14)] is to require

(15)

(16)

With this background in mind, the goal of this work is to show
how to construct such ETF (Γ′) and ERF (Γ′′) operators. While the
study of ETFs is well explored by now, the case of ERFs is quite unex-
plored, and we will identify it as a new target below. The end result
of this work will be a compact expression [Eqs. (45)–(47) and (52)],
which can easily be added to the rescaling direction in the future
so as to maintain the linear and angular momentum of the nuclei
during an FSSH calculation.

II. THEORY: ELECTRON TRANSLATION FACTORS
(ETFS) AND ELECTRON ROTATION FACTORS (ERFS)

As stated above, the theory of ETFs is well flushed out in the lit-
erature, while the concept of ERFs is far less understood. In order to
be as pedagogical as possible, we will now recapitulate the usual pre-
scription for constructing ETFs (whereby one performs an electronic
structure calculation in a translating frame) and then discuss how
one might extend these ideas to construct ERFs (whereby one per-
forms an electronic structure calculation in a rotating frame). More
specifically, an outline of this section is as follows: in Sec. II A, we
review the well-studied one-electron ETF term (Γ′) [see Eq. (18)
below]. In Sec. II B, we explore the consequences of Eqs. (15) and
(16) (which are constraints on the total Γ = Γ′ + Γ′′), and this explo-
ration leads us to the relevant constraints on Γ′′ [see Eqs. (21) and
(25) below]. While Sec. II B 1 reviews our initial approach7 for con-
structing one version Γ′′ (which is found to be unstable), Sec. II B 2
offers a new and far more stable ansatz. In Sec. II C, we further inves-
tigate these new Γ′′ matrix elements and show that one can achieve
size-consistency by demanding the locality of the ERF, which leads
to the final expressions for Γ′′ shown in Eqs. (45)–(47). In Sec. II C 2,
we briefly demonstrate that the expression we find for Γ′′ is not
entirely ad hoc but rather can be derived from a general con-
strained minimization procedure (as show in Appendix C). Finally,
the special case of the linear molecule is discussed in Sec. II D.

A. Translation: Γ′

In the case of translation, the motivation behind ETFs is to per-
form electronic structure calculations in a translating basis, which
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leads to so-called ETFs (henceforward, labeled as Γ′). As shown in
several papers,5,14–20 if one boosts all atomic orbitals by the velocity
of their attached nucleus, e.g.,

μ(x)→ μ(x) exp (imevB ⋅ x/h̵), (17)

for orbital μ on atom B, one finds a correction to the derivative
couplings of the form

Γ′Aα
μν =

1
2ih̵

pα
μν(δBA + δCA). (18)

Here and below, μ indexes an orbital centered on atom B, ν indexes
an orbital centered on atom C, and pα

μν is the α component of the
electronic momentum. Intuitively, the electronic momentum oper-
ator emerges because we must take into account the fact that any
nuclear displacement moves the electrons as well [as highlighted in
Eq. (6)].21–23 It is easy to show from Eq. (18) that

∑
A

Γ′Aμν =
pμν

ih̵
. (19)

As far as angular momentum is considered [i.e., Eq. (16)], Eq. (18)
implies that

∑
Aβγ

ϵαβγXAβΓ′Aγ
μν =

1
ih̵∑μν

∑
βγ
⟨μ∣

1
2

ϵαβγ(XBβ + XCβ)p̂
γ
∣ν⟩, (20)

where we now have used the Levi–Cività symbol, ϵαβγ.

B. Rotation: Γ′′

Beyond translation, the much bigger question regards the
proper means to restore angular momentum conservation with Γ′′.
Given Eq. (19) and the fact that Γ = Γ′ + Γ′′, Eq. (15) requires that
Γ′′ must satisfy

∑
A

Γ′′Aμν = 0. (21)

Next, according to Eqs. (16) and (20), it follows that Γ′′ must
satisfy

∑
Aβγ

ϵαβγXAβΓ′′Aγ
μν =

1
ih̵
⟨μ∣

1
2
(l̂ (B)α + l̂ (C)α )∣ν⟩. (22)

Here, l̂ (B)α and l̂ (C)α are the α components of the electron angular
momentum operators around atoms B and C, respectively,

l̂ (B) = (x̂ − XB) × p̂, (23)

l̂ (C) = (x̂ − XC) × p̂. (24)

In the compact vector form, Eq. (22) reads

∑
A

XA × Γ′′Aμν =
1
ih̵
⟨μ∣

1
2
(l̂ (B) + l̂ (C))∣ν⟩ ≡ Jμν. (25)

Here, we have defined an atom-centered electronic angular momen-
tum Jμν; we emphasize that Jμν ≠

1
ih̵ ⟨μ∣L̂e∣ν⟩.

Now, in a recent paper,7 we argued that because one cannot
rotate individual basis functions on a single atom without involving
other atoms in the course of a rigid rotation, one could not generate
a strictly local one-electron ERF operator (Γ′′Aμν ) directly analogous
to the ETF operator (Γ′Aμν) in Eq. (18). Here, we would define Γ′′Aμν

to be strictly local if Γ′′Aμν = 0 when neither μ nor ν indexes an
orbital centered on atom A. To that end, in Ref. 7, we constructed a
many-electron strictly local ERF operator that rotates atomic orbitals
during the course of a rigid rotation. Furthermore, it should be noted
that any direct projection of a pre-computed derivative coupling (as
in Ref. 6) can also be considered a many-electron operator in some
sense. Unfortunately, a many-electron ERF is not desirable—not
only because one loses physical meaning but also because one would
like to use such an ERF to build a phase space Hamiltonian (see
Ref. 24). To that end, in this paper, we will show below that if strict
locality is relaxed in favor of semi-locality, we can, in fact, generate a
one-electron ERF operator Γ′′Aμν .

1. Review of the approach in Ref. 7
As means of background, imagine a starting geometry X (which

is a 3 by N matrix with each column representing the Cartesian coor-
dinate of one atom) and a rotational transformation R̂, which rotates
both the nuclei and the electrons at an angle θ (which is a three-
dimensional vector as it includes the axis of rotation as well as the
magnitude). If one wishes to perform a calculation in the basis of
rotating electronic atomic orbitals, the key quantity of interest is the
angle at which all orbital shells of the electronic basis functions must
be rotated. To that end, if we assume an infinitesimally small pure
rotation, we can calculate7 the angles dθα from the change in nuclear
coordinates,

dX = exp(−
i
h̵∑α

dθαL̂ α
)X − X (26)

≈ −
i
h̵∑α

dθαL̂ αX. (27)

Here, L̂ is the angular momentum operator with matrix elements
⟨β∣L̂ α

∣γ⟩ = ih̵ϵαβγ in R3.
Now, in the vicinity of a given geometric configuration X, one

can always separate the geometries that are strict rotations of X from
the geometries that involve moving interior coordinates. If, however,
one seeks a general angle θ(X), which is defined for geometries that
are not strict rotations of the original configuration X, the result
is not unique. In Ref. 7, we found an approximate θ by projecting
the 3N–dimensional problem onto a weighted three-dimensional
problem, and the final result was

∂θβ

∂XAα
= −

1
2∑γσ

ϵαβγΛ−1
γσ XAσ , (28)

where

Λαβ =∑
B

XBαXBβ. (29)

Following the logic in Ref. 7, this finding would lead us to define a
one-electron ERF term as
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Γ′′Aα
μν = −∑

β

∂θβ

∂XAα
Jβ

μν, (30)

=
1
2∑βγσ

ϵαβγJβ
μνΛ−1

γσ XAσ. (31)

For the definition of Γ′′ in Eq. (31), the constraint in Eq. (25) is
automatically satisfied.

2. An improved approach
Unfortunately, the expression ∑σ Λ−1

γσ XAσ in Eq. (31) is very
unstable when the atoms are nearly co-planar. While the instability
for a linear molecular might be expected (and be physically mean-
ingful), the instability for a planar molecule suggests some defects
in the expression. To address this problem here, we propose another
way of solving Eq. (27). Note that there are 3 by N variables (dXA)

but only three angles (θα). Thus, a least-squares fit solution would
appear to be a strong path forward. Let us define

X̃ α
= −

i
h̵

L̂ αX, (32)

and let us solve for dθα by minimizing the squared norm,

∣dX −∑
α

X̃ αdθα∣

2

. (33)

The solution to this problem is

dθα = −∑
β

K−1
αβ∑

Aγ
X̃β

AγdXAγ, (34)

where

Kαβ = −Tr (X̃ αX̃ β⊺
). (35)

In differential form, Eq. (34) reads

∂θα

∂XAγ
= −∑

β
K−1

αβ X̃β
Aγ. (36)

Since Lα
βγ = ih̵ϵαβγ, the results can then be further simplified as

Kαβ = −∑
Aγ

XAγXAγδαβ +∑
A

XAαXAβ, (37)

∂θα

∂XAγ
= −∑

σβ
K−1

αβ ϵσβγXAσ. (38)

Substituting Eq. (38) into Eq. (30) and noting that Kαβ = Kβα, we
recover that

Γ′′Aγ
μν =∑

αβσ
ϵγσβXAσK−1

βα Jα
μν. (39)

The matrix K in Eq. (37) is effectively the negative of a massless
moment of inertia and can be written in a simple compact vector
form,

K = −∑
A
(X⊺AXA)I +∑

A
XAX⊺A, (40)

where XA is a column vector representing the Cartesian coordinates
of atom A and I is a 3 × 3 identity matrix. The tensor Γ′′ in Eq. (39)
also has a simple compact form,

Γ′′Aμν = XA × (K−1Jμν), (41)

which clearly satisfies the constraint in Eq. (25).

C. Locality and size consistency
At this point, we have shown how to satisfy Eq. (25), but we

have not addressed the constraint in Eq. (21). That being said, before
we address such a constraint, we must first discuss the question of
locality. In particular, the ansatz for Γ′′ in Eq. (41) is incredibly
delocalized and not size-consistent. Physically, if we have two non-
interacting subsystems separated far apart from each other, then if
atom A resides on one subsystem, while orbitals χμ and χν reside on
the other subsystem, we will find that Γ′′Aμν ≠ 0, which is unphysical.
To have any physical meaning, Γ′′Aμν must be localized around the
atoms where χμ, χν are centered. To achieve a measure of locality, we
can introduce a weighting factor ζA

μν such that

K → Kμν = −∑
A

ζA
μν(X

⊺
AXA)I +∑

A
ζA

μνXAX⊺A, (42)

Γ′′Aμν → ζA
μνXA × (K−1

μν Jμν), (43)

where ζA
μν is maximized when χμ or χν are centered on atom A

and decays rapidly otherwise. Equations (42) and (43) are almost
our desired equations for Γ′′, but we have not yet addressed the
constraint in Eq. (21).

In order to satisfy the constraint in Eq. (21), we will need to
recenter the position XA by a quantity X0

μν for each pair of orbitals,
χμ and χν. According to Eq. (21), we require

∑
A

ζA
μν(XA − X0

μν) = 0, (44)

which gives

X0
μν =∑

A
ζA

μνXA/∑
A

ζA
μν. (45)

Thus, at the end of the day, a reasonable choice for Kμν and Γ′′Aμν is

Kμν = −∑
A

ζA
μν(XA − X0

μν)
⊺
(XA − X0

μν)I

+∑
A

ζA
μν(XA − X0

μν)(XA − X0
μν)
⊺

, (46)

Γ′′Aμν = ζA
μν(XA − X0

μν) × (K
−1
μν Jμν), (47)

respectively. Equations (45)–(47) are our final equations for a semi-
local one-electron ERF, from which one can verify that Γ′′Aμν satisfies
Eqs. (21) and (25),

∑
A

Γ′′Aμν =∑
A

ζA
μν(XA − X0

μν) × (K
−1
μν Jμν) = 0, (48)

J. Chem. Phys. 160, 124102 (2024); doi: 10.1063/5.0192083 160, 124102-4

Published under an exclusive license by AIP Publishing

 30 M
arch 2024 04:13:45

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

∑
A

XA × Γ′′Aμν =∑
A

ζA
μνXA × [(XA − X0

μν) × (K
−1
μν Jμν)], (49)

=∑
A

ζA
μν(XA − X0

μν) × [(XA − X0
μν) × (K

−1
μν Jμν)],

(50)

= Jμν. (51)

1. The choice of ζA
μν

All that remains is to choose a function form for ζA
μν in

Eqs. (45)–(47). Below, we investigate a semi-local function of the
form

ζA
μν = exp(−w

2∣(XA − XB)∣
2
∣(XA − XC)∣

2

∣(XA − XB)∣
2
+ ∣(XA − XC)∣

2 ), (52)

where again, we assume that χμ is centered on atom B and χν is cen-
tered on atom C. The parameter w controls the locality of the final
ERF, and below, we will provide insight into how to best optimize
and analyze such a function.

2. An alternative approach based on minimization
Interestingly, Eqs. (45)–(47) for Γ′′Aμν can be derived from a

totally different principle in a more direct fashion. The idea is to
compute the minimal Γ′′Aμν that are consistent with the constraints
in Eqs. (21) and (25). The corresponding Lagrangian is

L =∑
Aμν

1
ζA

μν
Γ′′A⊺μν Γ′′Aμν −∑

μν
λ⊺1μν(∑

A
Γ′′Aμν )

−∑
μν

λ⊺2μν(∑
A

XA × Γ′′Aμν − Jμν). (53)

Here, ζA
μν is the weighting factor. and the constraints controlled

by λ1μν and λ2μν are Eqs. (21) and (25), respectively. As shown in
Appendix C, minimizing the Lagrangian in Eq. (53) is identical to
Eqs. (45)–(47).

D. Case of linear molecule
Before providing numerical results, one special case must be

addressed, for which Eq. (47) needs to be revised, namely, the case
of a linear molecule. In such a case, a rotation around the molecu-
lar axis is redundant, which leads to troubles for the form that the
ERF is calculated in Eq. (47). Specifically, Kμν is not invertible. We
can address this issue by assuming that the ERF term should recover
Jμν only in the directions perpendicular to the molecular axis. After
all, rotating the nuclei along the molecular axis does not change the
electron angular momentum.

Mathematically, this assumption allows us to exclude the null
space of Kμν when calculating K−1

μν Jμν in Eq. (47). Specifically, Let
u1, u2, u3 be the complete orthonormal basis of R3 and u3 is along
the molecular axis. Since XA − X0

μν is parallel to u3, we may write

XA − X0
μν = xA

μνu3 (54)

and

Kμν = −∑
A

ζA
μν(XA − X0

μν)
⊺
(XA − X0

μν)I

+∑
A

ζA
μν(XA − X0

μν)(XA − X0
μν)
⊺

(55)

= −∑
A

ζA
μν(x

A
μν)

2 I +∑
A

ζA
μν(x

A
μν)

2
u3u⊺3 (56)

= −∑
A

ζA
μν(x

A
μν)

2
(I − u3u⊺3 ). (57)

Clearly, u1 and u2 are the two degenerate eigenvectors of Kμν with
the eigenvalue −∑A ζA

μν(xA
μν)

2, while u3 has the corresponding eigen-
value of zero. Consequently, for a linear molecule, we simply replace
K−1

μν Jμν in Eq. (47) with

K−1
μν Jμν → −(∑

A
ζA

μν(x
A
μν)

2
)

−1

(I − u3u⊺3 )Jμν. (58)

In our developmental version of the Q-Chem electronic structure
package,25 we have implemented two different pieces of code: one
which is for the polyatomic case and one for the linear case. Presum-
ably, if an advanced solver with a generalized inversion routine were
available that can solve Ax = b for A not invertible, both the cases
can be combined into one code.

III. NUMERICAL RESULTS AND DISCUSSION
The choice of w is critical for determining a meaningful ERF.

On the one hand, w should not be too small; w controls the local-
ity of the ERF term, and setting w to zero will lead to complete
delocalization (which breaks size consistency). On the other hand,
an arbitrarily large value is not desirable either as such a choice
would force many molecular environments to appear as if they
were diatomic (which we argued above is unstable and equivalent
to enforcing strict locality). From a numerical perspective, an arbi-
trarily large w will force the Kμν matrix to become singular, causing
numerical instability and a violation of the constraints in Eqs. (21)
and (25).

To demonstrate this point, we have applied our algorithm
to two systems, namely, the [5]helicene and methanol molecules

FIG. 1. Systems that the ERF term Γ′′ is calculated for: (a) [5]helicene. (b)
methanol. The Cartesian coordinates are provided in Tables I and II in Appendix D.
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FIG. 2. Numerical stability and locality of Γ′′Aμν . (a) Errors in the constraint in Eq. (21) (marked as constraint 1) and Eq. (25) (marked as constraint 2) as a function of different

w values. (b) Maximum value of Γ′′Aμν (in atomic units) as a function of w. The dashed vertical line represents w = 0.3 bohr−2. (c) Heat-map for ∣Γ′′ABC ∣
2 as defined in Eq. (59)

with atom A from Eq. (59) fixed as C2 in Fig. 1(a). A Gaussian broadening with σ2 = 1
2

bohr2 is applied. (d) Decay of ∣Γ′′ABB ∣
2 as a function of the distance between atom A

and atom B.

(shown in Fig. 1). In Fig. 2(a), we plot the errors in the two con-
straints [Eqs. (21) and (25)] for different w values. We find that the
error in the two constraints increases exponentially as w becomes
larger, and the deviation to the constraint in Eq. (21) reaches 10−7

when w is greater than 1 bohr−2. Next, in Fig. 2(b), we plot the max-
imum value of Γ′′ vs w. The maximum value of Γ′′ grows rapidly
when w changes from 0 to ≈0.3 bohr−2 and then slows down. These
two characteristics suggest thatw = 0.3 bohr−2 is a safe choice, which
balances both the locality and numerical stability. To provide fur-
ther insights into the locality of the Γ′′ tensor, see Fig. 2(c). Here, we
define a quantity

∣Γ′′ABC ∣
2
= ∑

μ on B
ν on C

∣Γ′′Aμν ∣
2

(59)

and visualize Γ′′ in terms of the distances between atom A and atom
B, C. More specifically, we plot a heat map that spans over all possible
B, C pairs for [5]helicene with atom A fixed as C2 labeled in Fig. 1(a).
The heat map plots Γ′′ calculated with w = 0.3 bohr−2; a Gaussian
broadening function (with σ2

= 1
2 bohr2) is applied for smoothness.

In Fig. 2(d), we plot ∣Γ′′ABC ∣
2 with B = C without the Gaussian broad-

ening function, so as to provide the most precise view possible for
the decay of Γ′′Aμν .

IV. DISCUSSION: INVARIANCE OF Γ UNDER
TRANSLATION AND ROTATION

Before concluding this manuscript, a discussion of translational
and rotational invariances is appropriate. Obviously, in order to
apply an ETF or ERF in a meaningful fashion, the matrix elements
ΓJK should not depend on the origin or orientation of the molecule.
Unfortunately, establishing such translational and, especially, rota-
tional invariance is complicated by the fact that atomic orbitals come
in shells and do not rotate with the molecular frame. For instance,
a px atomic orbital in one orientation becomes a py atomic orbital
when rotating the molecule at 90○ along the z axis. Now, quite gen-
erally, in any quantum chemistry calculation, all calculations depend
on the vector space of atomic orbitals (and not on the individual
choice of basis functions), which explains why quantum chemical
molecular energies are rotationally invariant. This fact can most eas-
ily be seen by noting that hμν transforms as a well-defined tensor
operator, and the creation/annihilation operators a†

μ/aν transform as
vectors. Thus, the one-electronic Hamiltonian,

∑
μν

hμνa†
μaν, (60)

is invariant to basis, i.e., we can mix one set of atomic orbitals
into any other set of basis functions without changing the overall
Hamiltonian. Now, obviously, if considering the operator
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∑
μν

ΓA
μνa†

μaν, (61)

mixing basis functions on different atoms does not make much sense
because the operator itself depends on a given atom A, but mixing
basis functions on the same atom does not change the overall opera-
tor. Thus, it should be hoped that such a mixing does not affect any
momentum-rescaling results. Indeed, Appendixes A and B present
that the rescaling direction ΓJK is indeed invariant to translations
and rotations of the molecule.

V. CONCLUSIONS AND OUTLOOK
By working on a traveling and rotating basis, we have shown

that one can derive physically motivated one-electron ETF (Γ′) and
ERF (Γ′′) operators so as to account for electronic motion. While the
ETF in Eq. (18) is well-known, the key new equations of this paper
are Eqs. (45)–(47). An alternative derivation of the ERF operator (as
found by a constrained minimization) is offered in Appendix C as
well. Perhaps not surprisingly, while the ETFs involve the electronic
linear momentum operator, the ERFs involve the electronic angular
momentum operator.

As discussed in Sec. II C, although Γ′Aμν can be constructed in
a strictly local fashion, the Γ′′Aμν tensor can be constructed only in
a semi-local fashion. This difference is inevitable given the differ-
ent nature of linear vs angular momentum, but indeed a reasonably
semi-localized (not strictly localized) Γ′′ can be achieved by enforc-
ing locality through the ζ weighting factor in Eq. (52). As a practical
matter, the data in Fig. 2(b) suggest that w = 0.3 bohr−2 is a rea-
sonable choice. Note that the one electron operator ERFs derived
here should be applicable to just about any excited states, includ-
ing the time-dependent density functional theory/time-dependent
Hartree Fock (TD-DFT/TDHF) states, where the community has
established how to interpret the relevant response functions (at least
approximately) through the lens of wave functions.26–29 Interest-
ingly, by enforcing locality (or semi-locality)—which is meaningful
as far as achieving size consistency—the matrix elements of the
ERFs increase, such that for the molecules presented here, the
ERFs between the different configuration interaction singles (CIS)
excited states are roughly in the same order of magnitude as the
corresponding ETFs (which contrasts with the results in Ref. 7).

Looking forward, it is important to note that the approach
above can be easily extended to systems with spin degrees of free-
dom if we remember that electronic spin is an important form of
angular momentum. In such a case, if we wish to conserve the total
angular momentum, we need only define

Jα
μν =

1
ih̵
⟨μ∣

1
2
(l̂ (B)α + l̂ (C)α ) + ŝα∣ν⟩ (62)

instead of Eq. (25), where we now work with a spin-atomic basis
(instead of a spatial orbital basis) and allow for the ERFs to mix spin
degrees of freedom.

Finally, in a companion paper,24 we argue that the ERFs and
ETFs proposed in the present paper should have a value far beyond
the present context of momentum-rescaling in surface hopping. In
particular, as shown in Ref. 8, one can argue that the standard
(classical) Born–Oppenheimer dynamics (without a Berry force)
ignore the electronic dynamics and, therefore, do not conserve the
total angular or linear momentum in general. However, in such a

context, Ref. 24 demonstrates that when the dynamics are run along
a Hamiltonian parameterized by the nuclear position and momen-
tum, Ĥ(X, P) = P2

2M − ih̵ P
M ⋅ Γ + Ĥel(X), the resulting dynamics do

conserve the total linear and angular momentum. Thus, the present
derivation of Γ may well be extremely important in the future for
adiabatic propagation and not just for surface-hopping momentum
rescaling. Moreover, Truhlar and co-workers have demonstrated
that the Ehrenfest dynamics violate angular momentum conserva-
tion, and they have suggested removing the relevant term from the
derivative coupling that appears in the Ehrenfest equation of motion.
Thus, the present derivation of Γ should also be important in the
future for non-adiabatic propagation more generally (although we
would submit that a better remedy for the Ehrenfest dynamics is
to include the non-Abelian Berry curvature30). Looking forward,
our hope is that the present ERFs will be useful for modeling cou-
pling nuclear–electronic–spin dynamics quite generally, potentially
for modeling the chiral-induced spin selectivity (CISS) effect.31
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APPENDIX A: TRANSLATIONAL INVARIANCE

As discussed in Sec. IV, one would like to be sure that within
any surface-hopping algorithm, the momentum-rescaling direction
does not depend on the orientation or origin of the chemical prob-
lem. To that end, let us demonstrate translational invariance here. To
begin our discussion, let us emphasize that the one electron Hamil-
tonian is of course invariant to the translation of the molecule. This
fact is clear when we recognize that, upon translation, the atomic
orbitals translate with the molecule so that

hμν(X + δX) = hμν(X), (A1)
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and, therefore, the density matrix between any two electronic states
is also unchanged,

D JK
μν (X + δX) = D JK

μν (X). (A2)

Hence, it follows that

⟨J
RRRRRRRRRRR

∑
μν

hμνa†
μaν

RRRRRRRRRRR

K⟩
RRRRRRRRRRRX0

= ⟨J
RRRRRRRRRRR

∑
μν

hμνa†
μaν

RRRRRRRRRRR

K⟩
RRRRRRRRRRRX0+δX

. (A3)

Next, consider rescaling the momentum along the proposed
Γ = Γ′ + Γ′′ direction, where the ETF is defined in Eq. (18) and the
ERF is defined in Eqs. (45)–(47),

⟨J∣∑
μν

ΓA
μνa†

μaν ⋅ P∣K⟩. (A4)

Note that under translation, the following rules hold:

1. P does not change direction.
2. Γ′ is translational invariant (Γ′Aμν(X + δX) = Γ′Aμν(X)) because

pμν(X + δX) = pμν(X).
3. Kμν and Jμν are both invariants under translation, i.e., Kμν

(X + δX) = Kμν(X) and Jμν(X + δX) = Jμν(X), so that Γ′′Aμν is
also translationally invariant [(Γ′′Aμν (X + δX) = Γ′′Aμν (X))].

These rules prove that

ΓA
μν(X + δX) = ΓA

μν(X). (A5)

APPENDIX B: ROTATIONAL INVARIANCE

The final item that remains to be proven is rotational invari-
ance. Proving rotational invariance is a bit more involved than for
translation because, even though a Gaussian basis in a quantum
chemistry code translates with the molecule, the basis does not rotate
with the molecule. In other words, in practice, the orientation of
a given atomic orbital does not depend on the orientation of the
molecule. To that end, establishing notation will be essential. Let χμ
be an atomic orbital centered on atom B with a definitive orienta-
tion, e.g., a px orbital. If the molecule translates to a new location,
we will still index the same orbital by χμ (which would still be, e.g.,
a px orbital). Now, if the molecule rotates, let us denote the rotated
atomic orbital by χ̄μ, χ̄ν. Let us represent a rotational transformation
of XA by a matrix R, i.e.,

XA
→ RXA. (B1)

To begin our discussion, consider the one-electron Hamilto-
nian, hμν. These matrix elements are rotationally invariant,

hμ̄ν̄(RX) = hμν(X), (B2)

which forces the corresponding transition density matrix to also be
invariant,

DJK
μ̄ν̄(RX) = D JK

μν (X). (B3)

Equation (B3) reflects the fact that states J and K rotate with the
molecule, and the same electronic structure solutions must arise

at any geometry in the presence of identical Hamiltonian matrix
elements. Altogether, it then follows that

⟨J
RRRRRRRRRRR

∑
μν

hμ̄ν̄a†
μ̄aν̄

RRRRRRRRRRR

K⟩
RRRRRRRRRRRRX

= ⟨J
RRRRRRRRRRR

∑
μν

hμνa†
μaν

RRRRRRRRRRR

K⟩
RRRRRRRRRRRX

. (B4)

Next, let us consider the proposed one-electron ETF and ERF
terms. We would like to show that these tensors lead to rotationally
invariant directions in the sense that

⟨J
RRRRRRRRRRR

∑
μν

Γ′Aμ̄ν̄ a†
μ̄aν̄ ⋅ RP

RRRRRRRRRRR

K⟩
RRRRRRRRRRRRX

= ⟨J
RRRRRRRRRRR

∑
μν

Γ′Aμν a†
μaν ⋅ P

RRRRRRRRRRR

K⟩
RRRRRRRRRRRX

, (B5)

⟨J
RRRRRRRRRRR

∑
μν

Γ′′Aμ̄ν̄ a†
μ̄aν̄ ⋅ RP

RRRRRRRRRRR

K⟩
RRRRRRRRRRRRX

= ⟨J
RRRRRRRRRRR

∑
μν

Γ′′Aμν a†
μaν ⋅ P

RRRRRRRRRRR

K⟩
RRRRRRRRRRRX

. (B6)

To that end, note that if we rotate a molecule, it must be true
that

PA
→ RPA, (B7)

and it is also straightforward to show that

pμ̄ν̄ = Rpμν, (B8)

J μ̄ν̄ = RJμν. (B9)

This equality is also proved explicitly in the Appendix of Ref. 24. At
this point, Eq. (B5) follows from the definition in Eq. (18) and the
rotational transformations in Eqs. (B3), (B7), and (B8).

Furthermore, from Eqs. (45) and (46), it follows that

X0
μ̄ν̄ =∑

A
ζA

μνRXA/∑
A

ζA
μν, (B10)

= RX0
μν, (B11)

K μ̄ν̄ = −∑
A

ζA
μν(XA − X0

μν)
⊺
(XA − X0

μν)I

+∑
A

ζA
μνR(XA − X0

μν)(XA − X0
μν)
⊺

R⊺ (B12)

= RKμνR⊺. (B13)

Substituting the above-mentioned equations into Eq. (47), we
find

Γ′′Aμ̄ν̄ = ζA
μν(R(XA − X0

μν)) × (RK−1
μν R⊺RJμν) (B14)

= ζA
μν(R(XA − X0

μν)) × (RK−1
μν Jμν) (B15)

= ζA
μνR((XA − X0

μν) × (K
−1
μν Jμν)) (B16)

= RΓ′′Aμν . (B17)

Therefore, in the end, we can prove Eq. (B6) using Eqs. (B3),
(B7), and (B17). Indeed, the rescaling direction for the momentum
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will be the same (relative to the molecular frame) for any
molecular orientation. Note that, according to Eqs. (18), (B8),
and (B17),

ΓA
μ̄ν̄(RX) = RΓA

μν(X). (B18)

APPENDIX C: EQUIVALENCE OF A LAGRANGIAN
APPROACH AND THE APPROACH BASED
ON A ROTATING BASIS

Here, we will show that the results above in Eqs. (45)–(47)
(which were found by calculating the derivative coupling in a
rotating basis) can also be achieved by minimizing a constrained
Lagrangian, whereby we seek the smallest ERFs that satisfy Eqs. (21)
and (25). The relevant Lagrangian is of the form

L =∑
Aμν

1
ζA

μν
Γ′′A⊺μν Γ′′Aμν −∑

μν
λ⊺1μν(∑

A
Γ′′Aμν )

−∑
μν

λ⊺2μν(∑
A

XA × Γ′′Aμν − Jμν). (C1)

We will now show that the solution to this constrained
problem is

X0
μν =∑

A
ζA

μνXA/∑
A

ζA
μν, (C2)

Kμν = −∑
A

ζA
μν(XA − X0

μν)
⊺
(XA − X0

μν)I

+∑
A

ζA
μν(XA − X0

μν)(XA − X0
μν)
⊺

, (C3)

Γ′′Aμν = ζA
μν(XA − X0

μν) × (K
−1
μν Jμν). (C4)

To begin our derivation, note that the gradient of L in Eq. (C1)
w.r.t. Γ′′Aμν is zero, which reads

2
ζA

μν
Γ′′Aμν − λ1μν − λ2μν × XA = 0. (C5)

For the simplicity of the notation, we may absorb factor 2 into the
Lagrangian multipliers and neglect the μ, ν indices,

Γ′′A = ζAλ1 + ζAλ2 × XA. (C6)

From the first constraint,

∑
A

Γ′′A = 0, (C7)

we have

λ1 = −λ2 ×
∑A ζAXA

∑A ζA = −λ2 × X0, (C8)

where X0 is defined in Eq. (C2). Then,

Γ′′A = ζAλ2 × (XA − X0
). (C9)

Substituting the equation above with the second constraint,

∑
A

XA × Γ′′A = J, (C10)

we have

∑
A

XA × (ζAλ2 × (XA − X0
)) = J, (C11)

and the double cross product is

∑
A

XA × (ζAλ2 × (XA − X0
))

=∑
A

ζAX⊺A(XA − X0
)λ2 −∑

A
ζA
(XA − X0

)X⊺Aλ2 (C12)

= ((∑
A

ζAX⊺A(XA − X0
))I −∑

A
ζA
(XA − X0

)X⊺A)λ2. (C13)

Let

K = −(∑
A

ζAX⊺A(XA − X0
))I +∑

A
ζA
(XA − X0

)X⊺A. (C14)

We compute

λ2 = −K−1J (C15)

and, therefore,

Γ′′A = ζA
(−K−1J) × (XA − X0

) (C16)

= ζA
(XA − X0

) × (K−1J). (C17)

When recovering the μ, ν indices, we have found

Γ′′Aμν = ζA
μν(XA − X0

μν) × (K
−1
μν Jμν). (C18)

The only thing left is to show that K defined in Eq. (C14) is
equivalent to Eq. (C3). Note that since

∑
A

ζA
(XA − X0

) = 0, (C19)

we can add X0⊺
(∑A ζA

(XA − X0
)) and −(∑A ζA

(XA − X0
))X0⊺ to

the first and second terms of Eq. (C14), respectively, which yields

K = −(∑
A

ζA
(XA − X0

)
⊺
(XA − X0

))I

+∑
A

ζA
(XA − X0

)(XA − X0
)
⊺

, (C20)

which is exactly Eq. (C3). As a result, the solution to minimizing the
Lagrangian in Eq. (C1) is equivalent to Eqs. (C2)–(C4).

APPENDIX D: GEOMETRIES FOR [5]HELICENE
AND METHANOL

Table I shows Cartesian coordinates of [5]helicene in the unit
of angstrom. Table II shows Cartesian coordinates of methanol in
the unit of angstrom.
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TABLE I. Cartesian coordinates of [5]helicene in the unit of angstrom.

C 1.169 858 1.521 282 −0.904 004
C 2.022 419 2.582 079 −1.139 007
C 3.350 247 2.551 820 −0.667 900
C 3.812 404 1.422 047 −0.027 389
C 2.968 889 0.303 892 0.186 737
C 1.588 966 0.370 167 −0.186 999
C 0.723 707 −0.781 432 0.054 863
C 1.367 883 −2.020 903 0.328 544
C 0.650 443 −3.244 646 0.207 739
C −0.649 875 −3.244 715 −0.207 773
C −1.367 520 −2.021 066 −0.328 413
C −0.723 558 −0.781 522 −0.054 646
C −1.588 946 0.369 996 0.187 169
C −2.968 796 0.303 559 −0.187 008
C −3.812 463 1.421 610 0.026 694
C −3.350 702 2.551 392 0.667 510
C −2.023 164 2.581 731 1.139 337
C −1.170 460 1.520 877 0.904 963
H −0.162 572 1.562 077 1.297 426
H −1.666 948 3.440 348 1.702 121
H −4.012 124 3.396 249 0.838 907
H −4.849 376 1.355 036 −0.294 565
C −3.509 600 −0.921 295 −0.687 867
C −2.752 239 −2.052 082 −0.689 718
H −3.185 559 −3.009 065 −0.970 220
H −4.554 636 −0.948 962 −0.986 370
H −1.176 808 −4.177 601 −0.391 862
H 1.177 529 −4.177 477 0.391 646
C 2.752 651 −2.051 731 0.689 672
C 3.509 962 −0.920 863 0.687 562
H 4.554 976 −0.948 444 0.986 120
H 3.186 120 −3.008 619 0.970 309
H 4.849 493 1.355 555 0.293 303
H 4.011 573 3.396 656 −0.839 828
H 0.161 740 1.562 284 −1.295 880
H 1.665 954 3.440 783 −1.701 508

TABLE II. Cartesian coordinates of methanol in the unit of angstrom.

C −0.652 998 0.022 929 −0.000 032
O 0.736 526 −0.133 385 0.000 018
H −0.980 477 0.560 041 −0.916 513
H −0.980 097 0.564 936 0.913 717
H −1.127 527 −0.979 878 0.002 897
H 1.113 883 0.784 406 −0.000 055
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