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ABSTRACT
For a system without spin–orbit coupling, the (i) nuclear plus electronic linear momentum and (ii) nuclear plus orbital electronic angular
momentum are good quantum numbers. Thus, when a molecular system undergoes a nonadiabatic transition, there should be no change
in the total linear or angular momentum. Now, the standard surface hopping algorithm ignores the electronic momentum and indirectly
equates the momentum of the nuclear degrees of freedom to the total momentum. However, even with this simplification, the algorithm still
does not conserve either the nuclear linear or the nuclear angular momenta. Here, we show that one way to address these failures is to dress
the derivative couplings (i.e., the hopping directions) in two ways: (i) we disallow changes in the nuclear linear momentum by working in a
translating basis (which is well known and leads to electron translation factors) and (ii) we disallow changes in the nuclear angular momentum
by working in a basis that rotates around the center of mass [which is not well-known and leads to a novel, rotationally removable component
of the derivative coupling that we will call electron rotation factors below, cf. Eq. (96)]. The present findings should be helpful in the short term
as far as interpreting surface hopping calculations for singlet systems (without spin) and then developing the new surface hopping algorithm
in the long term for systems where one cannot ignore the electronic orbital and/or spin angular momentum.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0160965

I. INTRODUCTION

Surface hopping is perhaps the most popular semiclassical non-
adiabatic dynamics algorithm.1,2 The idea behind surface hopping is
very simple: one propagates dynamics on one adiabatic surface for
some period of time, and one hops between surfaces so as to account
for nonadiabatic transitions. The algorithm is routinely used today3

because of its simplicity, its low cost, and its applicability to ab initio
problems. One of the algorithm’s main selling points is the abil-
ity to more or less simulate the correct quasi-classical equilibrium
distribution with detailed balance.4,5 This feat is achieved because
the algorithm conserves energy (and does not allow frustrated
hops).

Interestingly, however, standard surface hopping does not con-
serve linear momentum or angular momentum in the following
sense. Consider the case of one H atom (i.e.., one electron and one

nucleus) with the electron initially in a 3px orbital. If r represents the
electronic position and R represents the nuclear position, this initial
wavefunction can be represented as

Ψi(r, R) = χ(R)ϕ3px(r; R). (1)

In Cartesian coordinates, the derivative coupling between a 3px and
a 1s state is nonzero.6,7 Thus, a naive reading of Eqs. (9) and (11)
below would suggest that, according to surface hopping, if an H
atom is traveling in the x-direction, there is a finite chance that the
electron will relax to the 1s state and the atom will accelerate from
Pi to P f (and gain speed) in the x-direction. The final wavefunction
would be represented as

Ψ f (r, R) = χ′(R)ϕ1s(r; R). (2)
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Unfortunately, this hypothetical scenario makes clear the sur-
face hopping cannot maintain momentum conservation. For the
experiment just described, a naive quantum calculation for both
initial wavefunctions yields

⟨Ψi∣p̂e∣Ψi⟩ = ⟨Ψ f ∣p̂e∣Ψ f ⟩ = 0. (3)

Thus, according to the most naive interpretation of the
Born–Oppenheimer approximation, both the initial and final
electronic states have zero momentum (which was recognized long
ago8), and so, if the nucleus were to change its momentum (from
Pi to P f ), the linear momentum would not be conserved. On both
mathematical and physical grounds, it is clear that if the electronic
momentum can be ignored, the linear momentum of the nuclear
degrees of freedom (which is then equal to the total molecular
momentum) cannot induce a nonadiabatic transition. Over the last
few decades, a few authors have studied realistic molecules with
realistic derivative couplings (as opposed to Tully-style models) and
discussed the fact that standard surface hopping fails to conserve
linear momentum.9–13

Now, the thought experiment above lays bare some of the sub-
tleties associated with electronic momentum within the confines of
the Born–Oppenheimer approximation14,15 and then demonstrates
that those subtleties can erupt into big problems for a surface hop-
ping simulation. Within the scenario imagined above, one must
wonder why is the initial electronic momentum zero. After all, is not
the electron being dragged with the nucleus so that if the nucleus
initially has velocity v, must not also the electron? These are crucial
questions because one cannot equate the momentum of the molecu-
lar (nuclear + electronic) center of mass (which is a good quantum
number) with the momentum of the nuclear center of mass (which
is not a good quantum number). Indeed, there has been a great
deal of work on identifying and quantifying the current within a
Born–Oppenheimer framework,8 and the bottom line is that one
must allow for state crossings (and derivative couplings) if one seeks
to capture a nonzero electronic momentum.

Alas, even though standard Tully-style surface hopping aims
to go beyond the Born–Oppenheimer approximation and explic-
itly capture the entanglement of nuclear motion with electronic
transitions through derivative couplings, the algorithm effectively
ignores electronic momentum and does not address the questions
hypothesized above. This omission would appear reasonable on sev-
eral grounds. First, on physical grounds, one can wonder whether
including electronic momentum is actually important when one tra-
verses a conical intersection. Second, on practical grounds, like all
semiclassical nonadiabatic dynamics algorithms, the surface hop-
ping algorithm treats electrons and nuclei differently, and so under-
standing and comparing electronic vs nuclear momentum is already
tricky. Indeed, there is a large literature discussing different ways
that electronic observables can be calculated within a surface hop-
ping ansatz,16–21 and until recently,22,23 it was difficult to assess the
origins of Tully’s surface hopping algorithm24 in the first place.
For these reasons, many practitioners in the nonadiabatic dynamics
community have largely ignored electronic momentum. That being
said, practical solutions to nuclear momentum conservation have
emerged over the past decade. The bottom line is that if one works
in a translating (as opposed to fixed) basis of electronic orbitals, one

can derive reasonable electron translation factors11 that are appro-
priate for rescaling momentum and momentum conservation (see
below).

We now come to the key question motivating the present
paper. Unlike the case of linear momentum, the subject of angu-
lar momentum conservation is not widely discussed in the literature
in the context of semiclassical nonadiabatic dynamics, and so, after
resolving that the total nuclear momentum cannot induce a change
in electronic state, one must ask the following question: Can the
total angular momentum of the nuclei induce such a change? If
not, how should we modify the surface hopping algorithm (which
will allow such transitions)? Without thinking too hard, one might
presume that angular momentum could induce nonadiabatic tran-
sitions because we know that angular momentum cannot be fully
disentangled from vibrational motion (which leads to the Corio-
lis force), and the derivative coupling in an angular direction is
certainly nonzero.25 Yet, if the electronic states carry zero angu-
lar momentum, the analogous argument about angular momentum
must dictate that, just as for the case of linear momentum, the
nuclear angular momentum should be conserved and should not
induce nonadiabatic electronic transitions between electronic eigen-
states. For this reason, Shu et al. suggested13 that upon rescaling
momentum after a hop, one should project the new momentum to
make sure that one has not changed the total angular momentum.
That being said, while a naive projection [as in Eq. (65)] is ad hoc,
the question remains: Is there a more general (and physical) means
by which one can derive and insist that the overall nuclear angu-
lar momentum not dictate nonadiabatic transitions? In particular,
given that moving to a translating basis is enough to find a momen-
tum rescaling direction that conserves linear momentum, is there
an analogous approach of moving to a rotating basis whereby one
can remove the contribution of overall angular momentum from the
derivative coupling? In this paper, we will provide a partial answer
to this problem and offer a simple means for removing both the
rotating and translating components of the derivative coupling at
the same time.

Before concluding this introduction, an important caveat is in
order. The discussion above was predicated on our being able to
isolate eigenstates of the electronic Hamiltonian with formally zero
electronic linear and/or angular momentum. Mathematically, this
means that we must restrict ourselves to the case of the standard
non-relativistic electronic Hamiltonian, where there is time-reversal
symmetry but there are no spin–orbit couplings or fine structure.
As discussed above, in such a case, within the context of surface
hopping, the total momentum of a trajectory moving along a given
adiabatic surface is unambiguously equal to the nuclear momentum,
and therefore, for a hop from electronic state J to electronic state
K, one must conserve the nuclear linear and angular momentum:
we will offer a physically motivated means of achieving such nuclear
momentum conservation below, in Eq. (96). Nevertheless, even if we
can figure out how to conserve the nuclear momentum, subtle ques-
tions still remain regarding how best to treat electronic linear and
angular momentum when they cannot be ignored; we will discuss
this problem further in Sec. VI and offer one alternative solution in
the Appendix.

An outline of this paper is as follows: In Sec. II, we will begin
our analysis by quickly reviewing the surface hopping algorithm,
and we will remind the reader of why one would normally expect
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that the surface hopping algorithm should obey linear and angular
momentum conservation according to Noether’s theorem.26 There-
after, in Sec. III, we will dig further into the algorithm and show
specifically why the algorithm fails to conserve linear momentum, a
topic of much interest over the last decade, and we will review the
concept of electron translation factors (ETFs). In Sec. IV, we will
extend the discussion from Sec. III to the case of angular momen-
tum, and we provide a new expression for a derivative coupling in
a rotating frame [leading to the concept of electronic rotational fac-
tors (ERFs)]. In Sec. V, a few computational results are presented.
In Sec. VI, we conclude and discuss future directions, especially the
future possibilities for understanding the coupling between nuclear
motion and electronic spin.

Henceforward, we will use the following notation. We let
α, β, γ, δ, κ index directions in three-dimensional space (R3

). All vec-
tors in R3 are in bold, while all operators have a hat. The labels
J, K index adiabatic electronic states, while the labels A, B, C index
nuclear positions: RA, RB, RC. We let N denote the number of nuclei.
We denote vectors in N (or 3N) dimensional space with an overhead
arrow, e.g., R⃗ = (RA, RB, . . . , RN).

II. REVIEW OF SURFACE HOPPING AND NOETHER’S
APPROACH TO MOMENTUM CONSERVATION

Before we present our findings, it will be helpful to review
the relevant surface hopping equations and the standard Noether
approach to linear and angular momentum conservation.

A. Overview of surface hopping
Within a surface hopping algorithm, one propagates a trajec-

tory along an adiabatic path and one integrates the electronic density
matrix,

ρ̇JK =∑
L

−i
h̵
(HJLρLK − ρJLHLK). (4)

Here, Ĥ is the electronic Hamiltonian,

Ĥ =∑
i

p̂i ⋅ p̂i

2me
+ V(r̂1, . . . , r̂n, R1, . . . , RN). (5)

Let J be the active surface. To calculate a hopping rate from surface J
to surface K, one decomposes the rate of change of population, ρ̇JK .
From this analysis, one finds a very simple hopping probability of
the form

ProbJ→K = Θ(ΓJ→K), (6)

where Θ is the Heaviside function,

Θ(x) =
⎧⎪⎪
⎨
⎪⎪⎩

x, x > 0,

0, x < 0,
(7)

and

ΓJ→K = 2Re(
[ i
̵h HJK +∑Bα dBα

JK vBα]ρKJ

ρJJ
). (8)

Here, vBα is the classical velocity of nucleus B in the α direction.
In practice, as stated above, one almost always uses an adiabatic basis
so that HJK = 0 and all hopping comes from the second term above,

ΓJ→K = 2 Re(∑Bα dBα
JK vBαρKJ

ρJJ
). (9)

Here, dBα is the derivative coupling as caused by moving nucleus B
in the α direction,

dBα
JK =

⟨ΦJ ∣
∂Ĥ
∂RBα
∣ΦK⟩

EK − EJ
. (10)

After a hop from state J to state K, semiclassical theory dic-
tates that one rescales the nuclear momentum in the direction of the
derivative coupling (dJK),

P⃗ → P⃗ + ϵd⃗. (11)

The magnitude of the jump is dictated by solving for ϵ after
mandating energy conservation,

(P⃗ + ϵd⃗) ⋅
1
M
⋅ (P⃗ + ϵd⃗) + VK = P⃗ ⋅

1
M
⋅ P⃗ + VJ. (12)

B. Conservation of linear and angular
momentum in principle

If we want the surface hopping algorithm to conserve linear
and angular nuclear momenta, the key question is whether or not
a surface hop in the direction of the derivative coupling will pre-
serve the linear and angular momentum of the nuclei. Thus, the
form of the derivative coupling emerges as the fundamental quantity
of interesting in surface hopping. Note that the Hellman–Feynman
expression in Eq. (10) is not entirely equivalent to a gradient, but for
the purposes of understanding the relevant conservation laws, it will
be helpful to imagine that we can express the derivative coupling as
the gradient of some abstract function X (which is a surrogate for
the Hamiltonian),

dAα
JK

?
=

∂XJK

∂RAα
. (13)

At this point, consider first the case of linear momentum. If we
wish to conserve the linear momentum during the course of a hop,
the derivative couplings must satisfy

∑
A

dAα
JK = 0. (14)

In principle, using Noether’s theorem, one can derive Eq. (14) using
the translational invariance of the matrix X. More precisely, let
Δ be a vector in three dimensions, and let us imagine translating
every nucleus by Δ. Let Δ⃗ = (Δ, Δ, . . . , Δ) be the corresponding 3N
dimensional translation vector, and let R⃗ = (R1, . . . , RN) be the cor-
responding 3N dimensional vector of nuclear coordinates. If the
matrix element XJK satisfies translational invariance, it follows that

XJK(R⃗ + Δ⃗) = XJK(R⃗). (15)
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A first order expansion then yields

∑
A,β

∂XJK

∂RAβ
Δβ = 0. (16)

Thus, if we choose, e.g., Δ, to have only a component in only the
α direction, Δβ = δαβ, it follows that our derivative couplings would
satisfy

∑
A

∂XJK

∂RAα
= 0 (17)

and Eq. (14). Surface hopping should conserve linear momentum.
A similar thought experiment demonstrates that conservation

of angular momentum should arise (in principle) from the isotropy
of space and the derivative coupling should satisfy

∑
A,α,β

ϵαγβdAα
JK RAβ = 0. (18)

To that end, suppose that we have a rotationally invariant set of basis
functions (and later we will show how construct such a set). Let Û
be the 3 × 3 rotation matrix that rotates the molecular system. If the
system is indeed rotationally invariant, then we must have

XJK(ÛR1, ÛR2, . . . , ÛRN) = XJK(R1, R2, . . . , RN). (19)

Now, mathematically, such rotational invariance can be defined only
locally because there are many (different) paths by which one can
rotate one direction into another direction in three dimensions. To
that extent, it will be very helpful to expand the rotation matrix Û in
terms of the angular momentum operators (L̂x, L̂y, L̂z) around the
identity

Û =∑
γ

exp (iL̂ γδ/h̵) (20)

≈ Î +
i
h̵∑γ

L̂ γδ. (21)

Then, by a first order analysis, using the matrix elements of angular
momentum in three dimensions, (L̂ γ

)
αβ = ih̵ϵγαβ, it follows that

i
h̵

δ∑
A,α

∂XJK

∂RAα
(L̂ γRA)α = 0, (22)

i.e.,

∑
A,α,β

∂XJK

∂RAα
ϵαγβRAβ = 0. (23)

In other words, surface hopping should conserve angular
momentum.

Interestingly, note that, in the discussion above, one has the
freedom to choose any origin. Mathematically, if the matrix ele-
ments XJK satisfy Eq. (17) as well as Eq. (23), they will also
satisfy

∑
A,α,β

∂XJK

∂RAα
ϵαγβ(RAβ −Qβ) = 0. (24)

In other words, one can shift the origin by any arbitrary vector Q
and still conserve angular and linear momentum.

C. Explicit form and properties
of the derivative coupling

From the theory presented above, it follows that surface hop-
ping would conserve the nuclear linear and angular momentum if
(i) the derivative coupling were of the form of a gradient of a quan-
tify X as in Eq. (13), if (ii) the quantity X were to satisfy translational
invariance as in Eq. (15), and if (iii) the quantity X were to satisfy
rotational invariance as in Eq. (19). The fact that surface hopping
does not guarantee either nuclear linear or angular momentum con-
servation implies that at least one of the three conditions above are
not met.

At this point, in order to understand how and why sur-
face hopping does not guarantee either nuclear linear or angular
momentum conservation, it will be helpful to review the final expres-
sion for the derivative coupling that one recovers when applying
Hellman–Feynman theory [Eq. (10)] in the context of modern elec-
tronic structure theory using an atomic orbital basis. In such a case,
the form of a derivative coupling is as follows:

dBα
JK =

1
EK − EJ

⎛

⎝
∑
μν

Γ(h)JKνμ
∂hμν

∂RBα
+∑

μνλσ
Γ(π)JKνμλσ

∂πμνσλ

∂RBα

+∑
μν

Γ(S)JKνμ
∂Sμν

∂RBα

⎞

⎠
+∑

μν
DJK

νμ S̃Bα
νμ . (25)

Here, hμν and πμνλσ are (respectively) the one and two electronic
Hamiltonian matrices expressed in an atomic orbital basis. Sμν is
the overlap matrix, Sμν = ⟨μ∣ν⟩. The anti-symmetric derivative of the
overlap matrix also appears,

S̃Bα
μν =

1
2
(⟨μ∣

∂ν
∂RBα

⟩ − ⟨
∂μ
∂RBα

∣ν⟩). (26)

The exact expressions for the reduced matrices Γ(h)JKμν , Γ(π)JKμνλσ ,

and Γ(S)JKμν depend on the electronic structure method. In the
simplest case, suppose we have a CIS or TDDFT/TDA wavefunction,

∣ΨJ⟩ =∑
ia

tJa
i ∣Φ

a
i ⟩, (27)

each Slater determinant is composed of molecular orbitals,

∣Φa
i ⟩ = a†

aai∣ϕ1ϕ2 ⋅ ⋅ ⋅ϕN⟩, (28)

and each molecular orbital is, in turn, a combination of atomic
orbitals,

∣ϕ j⟩ =∑
μ

Cμj ∣χμ⟩. (29)

In such a case, expressions for the density matrices can be found
in Refs. 11 and 27. Expressions for the derivative couplings in the
context of multireference methods can be found in Refs. 28 and 29.
Expressions holding for the TD-DFT/RPA formalisms exist as
well30–32 if one makes the pseudo-wavefunction approximation.

Quite generally, for all electronic structure approaches, the
form of DJK

μν is quite simple. D JK
μν is the one-electron reduced

transition density matrix between states J and K,

DJK
μν =∑

pq
CμpCνq⟨ΨJ ∣a†

paq∣ΨK⟩. (30)
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Let us now address the three conditions we discussed above as
needed for nuclear linear and angular momentum conservation:

● (i) From Eq. (25), it becomes clear that the derivative cou-
pling is not a derivative of the form of Eq. (13) or a sum
of such derivatives with factors. The problem at bottom is
the last term, ∑μν D JK

νμ S̃Bα
νμ , because that term is clearly not a

derivative, as shown in Eq. (26).
● (ii) All of the other matrix elements in Eq. (25) (specifically,

∂hμν
∂RBα

, ∂πμνσλ
∂RBα

, and ∂Sμν
∂RBα

) do satisfy translation invariance. For
example,

∑
A

∂hμν

∂RAα
= 0. (31)

Thus, it would appear that enforcing linear momentum
conservation should be somewhat approachable within the
context of a surface hopping calculation.

● (iii) None of the matrix elements in Eq. (25) satisfy
rotational invariance. For example,

∑
A,α,β

∂hμν

∂RAα
ϵαγβRAβ ≠ 0. (32)

Thus, addressing angular momentum within a FSSH calcu-
lation looks to be far more involved than the case of linear
momentum.

From the considerations above, it will make sense to address
linear and angular momentum conservation separately.

III. RESTORING CONSERVATION OF LINEAR
MOMENTUM BY ACCOUNTING FOR ELECTRONIC
LINEAR MOMENTUM

Formally, the Born–Oppenheimer treatment is not well-
defined without phase conventions for the electronic states at every
nuclear geometry, R⃗. Quite generally, the standard choice of phase
conventions is to choose the electronic states to satisfy

h̵
i
(∑

i

∂

∂ri
+∑

n

∂

∂Rn
)ΦK(r⃗; R⃗) = (P̂N + p̂e)ΦK(r⃗; R⃗) = 0. (33)

In words, according to Eq. (33), the adiabatic electronic states
are identical if one translates both the electronic and nuclear
degrees of freedom at the same time, which is equivalent to solv-
ing the electronic Schrödinger equation in a so-called space fixed
frame (SFF).25 According to this phase convention, in a basis of
Born–Oppenheimer electronic states {∣ΦJ(R⃗)⟩}, the total (nuclear
+ electronic) linear momentum operator is represented by just the
nuclear momentum operator,

(P̂N + p̂e)χJ(R⃗)ΦJ(r⃗; R⃗) = (P̂N χJ(R⃗))ΦJ(r⃗; R⃗). (34)

This relationship is very convenient as far as understanding a
trajectory moving along a single surface.

Notwithstanding the beauty of Eq. (34), the phase convention
in Eq. (33) makes clear that the derivative couplings cannot satisfy

Eq. (14). In fact, if we multiply Eq. (33) by ΦJ(r⃗, R⃗) and integrate
over r⃗, we find

∑
B

dBα
JK = −∑

i
⟨ΦJ ∣

∂

∂riα
ΦK⟩, (35)

which is not compatible with Eq. (14). More generally, the impli-
cations of Eq. (33) must be taken seriously in the context of a
surface hopping calculation. Consider again the hypothetical H-
atom 3px → 1s hop described above for which surface hopping fails.
Physically, Eq. (33) stipulates the concurrent motion of electrons
and their corresponding nuclei, and Eq. (34) dictates that the nuclear
momentum operator actually represents the total momentum within
a Born–Oppenheimer calculation. However, Eqs. (9) and (11) do not
take into account this concurrence; these equations ignore the fact
that an electron in a 3px orbital is dragged along with the proton
so that both have the same initial velocity, and the total center of
mass for the H-atom (electronic plus nuclear) should function as a
constant of motion. As a result, the hopping rate has the spurious
feature whereby the overall translational motion of a collection of
nuclei can induce an electronic transition, even when the electrons
have the same initial and final momentum.

This line of thinking makes one realize that electronic motion
must be taken into account when calculating a hopping rate. The
usual approach toward solving these problems is to introduce elec-
tron translation factors,11,33–40 which we will now review. An alter-
native (but perturbatively equivalent) approach based on a different
partitioning of the Born–Oppenheimer Hamiltonian (that even-
tually leads to phase space surface hopping) is described in the
Appendix B.

A. Electron translation factors
Consider a single atomic orbital χμ(r) that is attached to atom

B that we intend to displace. The idea of electron translation factors
is that we replace

χμ(r)→ χμ(r) exp(
imevB ⋅ r

h̵
). (36)

This replacement establishes a dynamical phase factor for each elec-
tronic orbital and captures the idea that an electron is inevitably
pulled along with the nucleus to which it is centered. This dragging
of the orbital leads to a change in the hopping rate because HJK in
Eq. (8) is no longer diagonal; an off-diagonal term has appeared.

To quantify this effect, note that we will need to make several
approximations.

1. First, note that if we make the replacement in Eq. (36), then
the molecular orbitals in Eq. (29) need not be orthonormal
any longer. We will ignore this change. More generally, we will
ignore the difference in phases applied to different atoms.

2. Second, we will eventually take the limit that
exp (imevB ⋅ r/h̵)→ 1. As such, unless we pull down a
factor of vB, we will assume all other matrix elements
are unchanged (i.e., Ĥ will remain diagonal). The pri-
mary off-diagonal term then arises from the operation
of the electronic kinetic energy operator [1/2mep̂ ⋅ p̂
= −h̵2

/2me∇̂
2 in Eq. (5)]. When we operate ∇̂ 2 on the atomic
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orbital χμ(r) (which is associated with nucleus B), we find (to
first order)

∇
2χμ =

2ime

h̵
∇χμ ⋅ vB, (37)

i.e.,

−h̵2

2me
∇

2χμ = −ih̵∇χμ ⋅ vB. (38)

3. Having found that the substitution in Eq. (36) leads to a
non-diagonal electronic Hamiltonian and a new hopping rate
[and that we must invoke Eq. (8) instead of Eq. (9)], it is
fairly straightforward to estimate the total new matrix ele-
ment between adiabats J and K because the electronic kinetic
energy operator is a one-electron operator. In such a case,
we require only the matrix elements between single electron
states. Following Eq. (38), the matrix elements are of form

ζ̃νμ = −∫ drχνih̵(∇χμ ⋅ vB) (39)

= −∑
α

ih̵vBα ∫ drχν
∂χμ

∂rα
. (40)

At this point, we note that, by translational invariance and the
proper choice of electronic phase, one expects that moving the
atomic orbitals (electrons and nuclei) should not introduce a
new phase to the wavefunction. Formally, consider an orbital
χμ defined centered at a fixed nuclear position R0

B. If we wish to
transport this same orbital so that the orbital is now centered
at a nearby nuclear position RB, the relevant formula is

∣χμ(RB)⟩ = exp{(−ip̂e) ⋅ (RB − R0
B)/h̵}∣χμ(R0

B)⟩. (41)

Thus,

(P̂N + p̂e)∣χμ(RB)⟩ = 0, (42)

or in other words,

(
∂

∂rα
+

∂

∂RBα
)χμ(r; RB) = 0. (43)

Equation (43) is the single-orbital equivalent of the more
formal many-body quantum mechanics in Eq. (33). From
Eq. (43), it follows that

ζ̃νμ =∑
α

ih̵vBα ∫ drχν
∂χμ

∂RBα
. (44)

Finally, it is important to recognize that if the atomic orbitals
χμ and χν were orthonormal, then we would have (for all
B and α)

∫ dr(χν
∂χμ

∂RBα
+

∂χν

∂RBα
χμ) = 0. (45)

Thus, the matrix ζ̃ would be Hermitian. That being said, the
atomic orbitals are not orthonormal, and so in order for this

matrix to represent a Hamiltonian operator, it makes sense to
“Hermitianize” the matrix

ζνμ =
1
2
(ζ̃νμ + ζ̃∗μν) (46)

=∑
α

ih̵
2
vBα ∫ dr(χν

∂χμ

∂RBα
−

∂χν

∂RBα
χμ) (47)

= ih̵∑
α
vBαS̃Bα

νμ , (48)

where we have invoked the anti-symmetric overlap derivative
from Eq. (26).

With the three assumptions above, the final expression for the
Hamiltonian matrix element can be written cleanly in terms of the
one electron reduced transition density matrix (D JK

μν ). If we allow all
nuclei to move, the final result is

HJK =∑
μν

D JK
μν ζνμ = ih̵ ∑

μ,ν,B,α
D JK

μν vBαS̃Bα
νμ . (49)

The final hopping probability [Eq. (8)] becomes

ΓJ→K = 2Re(
[ i
̵h HJK +∑Bα dBα

JK v
Bα
]ρKJ

ρJJ
) (50)

= 2Re
⎛

⎝

∑Bα (d
Bα
JK −∑μν D JK

μν S̃Bα
νμ )v

BαρKJ

ρJJ

⎞

⎠
. (51)

Let us now revisit the case of hydrogen atom, where the
full electronic state is nothing more than an atomic orbital. We
can now prove that the analysis above completely eliminates all
hopping between energy levels. To see this point, let us choose
J = χμ = ϕg(r) to be the 1s electronic ground state; let K = χν = ϕe(r)
be an excited p electronic orbital. If we are interested in the tran-
sition between these two states, we can set D JK

μν = 1. Now, the two
states of interest are orthogonal (⟨ϕg ∣ϕe⟩ = 0), which implies that
⟨ϕg ∣

∂
∂Rα

ϕe⟩ + ⟨
∂

∂Rα
ϕg ∣ϕe⟩ = 0. Hence, it follows that

dα
ge ≡ ⟨ϕg ∣

∂

∂Rα
ϕe⟩ =

1
2
(⟨ϕg ∣

∂

∂Rα
ϕe⟩ − ⟨

∂

∂Rα
ϕg ∣ϕe⟩) = S̃α

ge (52)

and, thus, [by Eq. (51)] that ΓJ→K = 0.
More generally, this exercise introduces the concept of an

ETF-corrected derivative coupling that more properly recovers the
correct rates of electronic hopping and the correct direction for
momentum rescaling,

dETF,Bα
JK = dBα

JK −∑
μν

D JK
μν S̃Bα

νμ . (53)

Note that according to Eq. (25), this ETF-corrected derivative
coupling is equivalent to ignoring all terms proportional to S̃,

dETF,Bα
JK =

1
EK − EJ

⎛

⎝
∑
μν

Γ(h)JKνμ
∂hμν

∂RBα
+∑

μν
Γ(π)JKνμλσ

∂πμνσλ

∂RBα

+∑
μν

Γ(S)JKνμ
∂Sμν

∂RBα

⎞

⎠
. (54)
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Furthermore, as follows from Eq. (31) (and the analogous expres-
sions for π and S), this direction does not yield any change in to the
overall total momentum,

∑
B

dETF,Bα
JK =

1
EK − EJ

⎛

⎝
∑
μνB

Γ(h)JKνμ
∂hμν

∂RBα

+∑
μνB

Γ(π)JKνμλσ
∂πμνσλ

∂RBα
+∑

μνB
Γ(S)JKνμ

∂Sμν

∂RBα

⎞

⎠
= 0. (55)

Equation (55) can also be derived directly from Eq. (33) using basic
electronic structure theory manipulations,

∑
B

dBα
JK = −∑

i
⟨ΦJ ∣

∂

∂riα
ΦK⟩ (56)

= −
1
2∑i

(⟨ΦJ ∣
∂

∂riα
ΦK⟩ − ⟨

∂

∂riα
ΦJ ∣ΦK⟩) (57)

= −
1
2∑μν

D JK
μν (⟨χμ∣

∂

∂rα
χν⟩ − ⟨

∂

∂rα
χμ∣χν⟩) (58)

=
1
2∑μνB

D JK
μν (⟨χμ∣

∂

∂RBα
χν⟩ − ⟨

∂

∂RBα
χμ∣χν⟩) (59)

=∑
μνB

D JK
μν S̃Bα

νμ . (60)

Here, between Eqs. (56) and (57), we have used the fact that ∂/∂riα
is an anti-Hermitian operator. In Eq. (58), we have converted the
calculation to a second-quantized form using the fact that ∂/∂rα
is a one-electron operator. In Eq. (59), we have used Eq. (43).
Equation (60) follows from the definition in Eq. (26).

It is important to emphasize that Eq. (53) is not equivalent
to simply removing the translational component of the derivative
coupling,

dETF,Bα
JK ≠ dBα

JK −
1
N∑B

dBα
JK . (61)

Defining ETFs as in Eq. (61) would not be very physical because the
expression is not size consistent. More precisely, consider two non-
interacting systems 1 and 2, and an excitation between states J and K
in system 1, so that dBα

JK is nonzero exclusively for atoms B on system
1. According to the definition Eq. (61), dETF,Bα

JK would be nonzero for
atoms B in either system 1 or 2—which does not make sense. At a
minimum, one would expect that a more physical, size-consistent
correction would be

dETF,Bα
JK

?
= dBα

JK −
∣dBα

JK ∣

∑A ∣d
Aα
JK ∣
∑

A
dAα

JK . (62)

Note that this expression still does not agree with Eq. (53). See
Appendix C.

IV. RESTORING CONSERVATION OF ANGULAR
MOMENTUM BY ACCOUNTING FOR ELECTRON
ANGULAR MOMENTUM

All of the theory presented above for the case of linear momen-
tum should carry over to the case of angular momentum. After all,

both linear and angular momenta are equally good quantum num-
bers. Yet, there are two significant differences between these two
quantities. First, it is well known that one cannot fully separate angu-
lar momentum from vibrations for non-rigid bodies; Coriolis forces
inevitably arise. Thus, if one were able to remove all angular momen-
tum components of the derivative coupling, in the process, one
would also necessarily change (though likely not too much) some
vibrational components of the derivative coupling.

Second, all electronic structure calculations are performed in a
space fixed frame where the basis functions are assumed to translate
with nuclear motion (and not rotate). In other words, even though
the many body wavefunctions must follow41

(L̂N + L̂e)ΦK(r⃗; R⃗) = 0, (63)

a single-particle atomic orbital basis (parameterized by a single atom
B) does not satisfy any analog of Eq. (43),

∑
αβγ

ϵαβγ(rβ
∂

∂rα
+ RBβ

∂

∂RBα
)χμ(r⃗; R⃗) ≠ 0. (64)

Thus, if one wished to include “electronic rotational factors” or
ERFs so as to allow for electronic orbitals to rotate (rather than just
translate) with their associated nucleus, the task would not be very
easy.

Now, given these complications, the most obvious fix for
enforcing the conservation of angular momentum is simply to
remove the offending component of the angular momentum. One
approach is the projection scheme used in Ref. 13. This scheme
can be derived most easily by fixing the origin to be the “centroid”
(i.e., ∑ARA = 0). We derive this result in a very general form in
Appendix C using the method of Lagrange multipliers and show that
after removing the translational and rotational components of the
derivative coupling, the final result is

dAα
ETF+ERF = dAα

−
1
N∑B

dBα
−∑

βγ
ϵαβγRAα

×∑
β′

M−1
ββ′∑

B
∑
α′γ′

ϵα′β′γ′RBγ′d
Bα′ , (65)

where N is the total number of nuclei and M is the moment of
inertia matrix with all the masses set to 1. However, this equation
is difficult to justify. In particular, just like Eq. (61), this approach
yields non-size consistent derivative couplings. As discussed above,
consider two infinitely separated systems, 1 and 2, and two states
(J and K) localized to system 1. The derivative coupling dBα

JK will also
be localized to system 1. Unfortunately, however, Eq. (65) will yield a
dressed derivative coupling dETF−rot,Bα

JK delocalized over both systems
1 and 2. For this reason, there is good reason to derive a correc-
tion beyond Eq. (65) for removing the angular momentum com-
ponent from the derivative coupling in a size-consistent, physical
fashion.

A. A rotationally boosted set of atomic orbitals
Guided by our analysis above that dictated we work in a trans-

lationally boosted basis, we will presently aim to work a basis that is
rotating, which should enable us to remove the rotationally prob-
lematic components of the derivative coupling. Now, if all basis
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functions were s-orbitals, then our basis would automatically be
rotationally invariant: after all, an s orbital is an s orbital in any
frame. The problem is, however, that all practical quantum chem-
istry calculations involve (at least) p and d orbitals on atomic sites
and these orbitals do not individually transform in a rotationally
invariant fashion. For the most part, one never cares about the orien-
tation of these basis functions. After all, the electronic energy from
the Schrödinger equation is invariant to the identity of the individ-
ual basis functions; the energy depends only on the overall vector
space of basis functions. That being said, the expression in Eq. (54)
does care about the definition of each atomic orbital χμ and so we
must be careful as we seek to construct rotationally boosted atomic
orbitals χ̃μ.

To begin our analysis, suppose we have an arbitrary nucleus at
R0 and consider a rotation to

R = ÛR0 = exp
⎛

⎝
−

i
h̵∑γ

L̂ γθγ
⎞

⎠
R0. (66)

For now, we will not specify the origin of the rotation; as discussed
around Eq. (24), if one seeks to find derivative couplings that satisfy
Eqs. (14) and (18), one has freedom in choosing the origin. We can
construct a proper rotationally invariant basis ∣χ̃μ⟩ at position R from
the basis functions at ∣χμ⟩ at position R0 as follows:

∣χ̃μ(R)⟩ = exp
⎛

⎝
−

i
h̵∑γ

L̂γ
e θγ
⎞

⎠
∣χμ(R0)⟩. (67)

Next, we expand the rotation Û as an infinitesimal displace-
ment from the identity

RB = (I −
i
h̵∑α

θαL̂ α
)R0

B. (68)

Formally, the equation above is an overdetermined set of equa-
tions for θ(R⃗) because one does not constrain oneself to move along
a rotational degree of freedom only. Nevertheless, we can recover a
least squares fit for the solution by introducing weights and follow-
ing standard linear algebra inversion routines. Let us define R to
be the matrix of positions of each of the nuclei weighted by some
atom-specific parameter ζ,

R = [
√

ζ1R1,
√

ζ2R2, . . . ,
√

ζN RN]. (69)

According to Eq. (68),

R − R0
= −

i
h̵∑α

θαL̂ α R0 (70)

⇒ (R − R0
)(R0

)
T
(R0
(R0
)

T
)
−1
= −

i
h̵∑α

θαL̂ α. (71)

In other words,

R(R0
)

T
(R0
(R0
)

T
)
−1
− I = −

i
h̵∑α

θαL̂ α. (72)

Here, we see the introduction of the tensor,

Λ = R0
(R0
)

T , (73)

or in coordinates,

Λαβ =∑
B

ζBR0
BαR0

Bβ. (74)

Finally, using tr(L̂ α
) = 0, tr(L̂ αL̂ β

) = 2h̵2δαβ, and (L̂ α
)βγ = ih̵ϵαβγ, it

follows that

θα =
i

2h̵
tr(R(R0

)
T
(R0
(R0
)

T
)
−1

L̂ α
) (75)

= −∑
β,γ,τ,B

1
2

ζBRBβR0
BτΛ−1

τγ ϵαβγ. (76)

Thus, at the end of the day, we can write a rotating basis as

∣χ̃μ(R)⟩ = exp
⎛

⎝
∑

α,β,γ,δ,B

i
2h̵

ζBRBβR0
BδΛ−1

δγ ϵαβγL̂α
e
⎞

⎠
∣χμ(R0)⟩, (77)

or, in terms of the displacement R = R0 + η,

∣χ̃μ(R)⟩ = exp
⎛

⎝
∑

α,β,γ,δ,B

i
2h̵

ζBηBβR0
BδΛ−1

δγ ϵαβγL̂α
e
⎞

⎠
∣χμ(R0)⟩. (78)

It follows that to first order in η,

∣χ̃μ(R)⟩ = ∣χμ(R0)⟩ + ∑
α,β,γ,δ,B

i
2h̵

ζBRBβR0
BδΛ−1

δγ ϵαβγL̂α
e ∣χμ(R0)⟩ +O(η2

)

(79)

= ∣χμ(R0)⟩ + ∑
α,β,γ,δ,B

i
2h̵

ζBηBβR0
BδΛ−1

δγ ϵαβγL̂α
e ∣χμ(R0)⟩ +O(η2

).

(80)

From this, an easy calculation shows that

(L̂N + L̂e)χ̃μ(r; R) = 0 +O(η), (81)

and in particular,

(L̂N + L̂e)χ̃μ(r; R)∣R=R0
= 0. (82)

More generally, according to Ref. 41, Eq. (81) should hold rigor-
ously to all orders when evaluated at any point configuration R⃗ that
arises from a rigid rotation of the original configuration R⃗0 when the
correct rotation angle is chosen.

B. The derivative coupling in a rotating frame
At this point, we can construct the derivative coupling in a

rotated frame using Eq. (79) and take the derivative of the rel-
evant matrix elements. For instance, consider the one-electron
Hamiltonian operator ĥ,

hμ̃ν̃(R⃗) = ⟨χ̃μ(R⃗)∣ĥ(R⃗)∣χ̃ν(R⃗)⟩. (83)
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Using the chain rule, we can identify the key (new) term that
arises when we use rotationally boosted basis functions and evaluate
the entire expression at R⃗ = R⃗0,

∂hμ̃ν̃

∂RAβ
=

∂hop
μν

∂RAβ
−

i
2h̵ ∑αδγκτ

ϵαβγζAR0
AδΛ−1

δγ ⟨χμ∣[L̂α
e , h]∣χν⟩. (84)

Here, we have defined

∂hop
μν

∂RAβ
= ⟨χμ∣

∂ĥ
∂RAβ

∣χν⟩. (85)

For the second term on the right-hand side of Eq. (84), note
that by the isotropy of space,

[ĥ, L̂α
e + L̂α

N] = 0. (86)

Therefore, the derivative can also be written as

∂hμ̃ν̃

∂RAβ
∣

R=R0

=
∂hop

μν

∂RAβ
∣

R=R0

+
i

2h̵∑αδγ
ϵαβγζAR0

AδΛ−1
δγ ⟨χμ∣[L̂α

N , h]∣χν⟩∣R=R0

(87)

=
∂hop

μν

∂RAβ
∣

R=R0

+
1
2 ∑αδγκτ

ϵαβγζAR0
AδΛ−1

δγ∑
B

ϵακτRBκ
∂hop

μν

∂RBτ
∣

R=R0

(88)

=
∂hop

μν

∂RAβ
∣

R=R0

+
1
2∑δγ

ζAR0
AδΛ−1

δγ∑
B
(RBβ

∂hop
μν

∂RBγ
− RBγ

∂hop
μν

∂RBβ
)∣

R=R0

,

(89)

or if we drop the zero subscript,

∂hμ̃ν̃

∂RAβ
=

∂hop
μν

∂RAβ
+

1
2∑δγ

ζARAδΛ−1
δγ

×∑
B
(RBβ

∂hop
μν

∂RBγ
− RBγ

∂hop
μν

∂RBβ
). (90)

Now, Eq. (90) represents the derivative of the one electron
Hamiltonian matrix elements in a rotating basis functions. If one
constructs the cross product with the position operator, it is very
straightforward to prove that

∑
Aαβ

ϵαβγRAα
∂hμ̃ν̃

∂RAβ
= 0. (91)

Now, we must emphasize that the choice of basis functions in
Eq. (67) [which led to Eq. (90)] is appropriate only for motion along
rotations but not translations and/or strictly internal motion; as
discussed above, Eq. (81) is exact to all orders only along rigid rota-
tions of the original point R0.42 In general, given that molecules can
translate, rotate, and distort, the most straightforward and robust
approach is still to translate the individual basis functions for each
atom between different geometries, as in Eq. (41), and then differ-
entiate, thus recovering ∂hμν

∂RAβ
. From these considerations, it is clear

that we will need to compromise: it is impossible to construct trans-
lationally invariant and rotationally invariant one-electron basis
functions at all possible geometries in a smooth fashion where
each basis function is parameterized by a single nuclear position.
From the form of Eq. (90), a clear compromise candidate would
then be

∂hμ̃ν̃

∂RAβ
→

∂hμν

∂RAβ
+

1
2∑αδγ

ζARAδΛ−1
δγ

×∑
B
(RBβ

∂hμν

∂RBγ
− RBγ

∂hμν

∂RBβ
). (92)

In Eq. (92), if we ignore the second term on the right-hand side,
our result reduces to the standard result in quantum chemistry.
Moreover, when we include the second term, Eq. (91) still holds.

By linearity, we would then predict the following form for a
translationally and rotationally invariant derivative coupling:

dAβ
ETF+ERF,JK = dAβ

ETF,JK +
1
2∑δγ

ζARAδΛ−1
δγ

×∑
B
(RBβdBγ

ETF,JK − RBγdBβ
ETF,JK). (93)

C. Size consistency and electron rotational factors
It remains only to pick a value for the weights ζ and, if nec-

essary, in the spirit of Eq. (24), pick an origin. Let us begin with
the latter question. In order for the final derivative coupling to be
translationally invariant, according to Eq. (93), one can simply set
the origin to satisfy

∑
B

ζBRB = 0. (94)

Finally, let us address the question of how to choose the
weights, ζ. As described many times above, a momentum rescal-
ing direction can only be physical if that direction is size consistent.
However, size consistency with Eq. (93) is not automatic because of
the sum over atoms (B) on the second term on the right-hand side;
this term arises because the value for θ in Eq. (76) (which specifies
the angle of rotation) is not atom specific. Intuitively, a rigid rota-
tion involves collectively moving all of the atoms together, but if we
work with a one-electron basis where each basis depends on a sin-
gle nuclear position, one cannot disentangle rotations from other
motion. Equation (76) then approximates the rotation by analyz-
ing the average rotation motion of many nuclei, even though this
approach would seem to clearly break size-consistency.

The way out of this dilemma is to choose the weights ζ in a
way that ensures that different, non-interacting subsystems are never
entangled. Mathematically, this goal can be achieved by choosing

ζA = ∥dA
ETF,JK∥ =

√

∣dAx
ETF,JK ∣

2
+ ∣dAy

ETF,JK ∣
2
+ ∣dAz

ETF,JK ∣
2
. (95)

In such a case, our final expression for the derivative couplings can
be written in a very simple form, whereby one can clearly identify
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TABLE I. Derivative couplings (in a0
−1) between the first and the fourth CIS states for methanol according to a def2-svp basis. The derivative couplings are computed in four

possible ways: (a) no corrections made to the derivative couplings, (b) applying ERFs, and (c) applying ETFs, and finally (d) applying both ETFs and ERFs. For this molecule,
applying ETFs changes the derivative coupling far more than applying ERFs. Future work will be necessary to identify the overall magnitude of this correction to the momentum
rescaling direction.

Atom

No correction ERF only ETF only ETF and ERF

x y z x y z x y z x y z

C 0.3447 −0.0043 0.0003 0.3398 −0.0168 −0.0003 0.2287 −0.0671 0.0000 0.2255 −0.0761 −0.0004
H 0.0142 −0.0329 0.0158 0.0113 −0.0360 0.0157 0.0484 −0.0332 0.0131 0.0441 −0.0375 0.0129
H 0.0136 −0.0326 −0.0146 0.0097 −0.0348 −0.0148 0.0489 −0.0326 −0.0119 0.0434 −0.0363 −0.0122
H −0.0531 0.0352 0.0005 −0.0477 0.0339 0.0006 −0.0818 0.0350 0.0005 −0.0747 0.0327 0.0005
O −0.4608 −0.3230 −0.0040 −0.4321 −0.3088 −0.0027 −0.4668 −0.3545 −0.0032 −0.4399 −0.3406 −0.0023
H 0.2575 0.4496 0.0020 0.2352 0.4544 0.0015 0.2226 0.4524 0.0016 0.2016 0.4579 0.0014

FIG. 1. Derivative coupling vectors between the 1st and 2nd CIS states for methanol without (left) and with (right) electron rotational factors (ERFs). For these molecular
states, there is virtually no difference between the two vectors, as can be confirmed from the values in Table I.

the “electronic rotational factors” (ERFs) for removing any angular
component of the derivative coupling,

dAβ
ETF+ERF,JK = dAβ

ETF,JK +
∥dA

ETF,JK∥

2 ∑
δγ

RAδΛ−1
δγ

×∑
B
(RBβdBγ

ETF,JK − RBγdBβ
ETF,JK), (96)

where Λ is

Λαβ =∑
B
∥dB

ETF,JK∥RBαRBβ, (97)

and the origin has been chosen such that

∑
B
∥dB

ETF,JK∥RB = 0. (98)

Equation (96) is size consistent because if ∥dA
ETF,JK∥ = 0, one is

guaranteed that ∥dA
ETF+ERF,JK∥ = 0 as well. The use of Eq. (96) also

ensures that momentum rescaling will conserve the nuclear linear
and angular momentum within the surface hopping algorithm. In
other words, Eq. (96) explicitly satisfies

∑
A

dAβ
ETF+ERF,JK = 0, (99)

∑
Aαβ

ϵαβγRAαdAβ
ETF+ERF,JK = 0. (100)

Note that, as in the ETF case, Eq. (96) cannot be derived
through a naive minimization scheme based on Lagrange multipli-
ers. See Appendix C.

V. RESULTS
While ETFs are routinely calculated nowadays by most elec-

tronic structure packages that can evaluate derivative couplings,
Eq. (96) is novel. One might label these terms as electron rotational
factors (ERFs), and to our knowledge, they are not routinely calcu-
lated by any electronic structure package. Using a developmental
version of Q-Chem,43 we have calculated the derivative couplings
between the first and the fourth configuration-interaction singles
(CIS) states for the methanol molecule at the CIS/def2-svp level of
theory including (or not including) ETFs and/or ERFs. The first and
the fourth CIS states have excitation energies 8.74 and 12.20 eV,
respectively (see Appendix for the geometry used). In Table I, we
list the derivative couplings between CIS states 1 and 4. Note that
correcting the derivative coupling with the ERFs introduced only a
small change. To facilitate comparison, we also list in Table I the
derivative couplings with only ETF corrections and with both ETF
and ERF corrections. For small molecules, the ETF correction is
known to change the derivative coupling more dramatically,11 but
we see in Fig. 1 that the ERFs appear have a smaller effect in this case.
In the future, we will need to investigate the size of the ERF correc-
tion and ascertain exactly when an ERF correction will be essential
because angular momentum conservation is paramount (as it was in
Ref. 13).
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VI. DISCUSSION AND CONCLUSIONS
Linear momentum and angular momentum are good quantum

numbers for molecular systems, and thus, neither total transla-
tions nor total rotations can induce a nonadiabatic electron change
of state. That being said, problems with conservation arise within
a surface hopping formalism because the algorithm completely
ignores all electronic linear and angular momentum (which are
assumed to be zero because all real-valued electronic states carry
zero expectation value for linear and angular momentum). Thus,
within a simple surface hopping formalism, it is perhaps not sur-
prising that linear and angular momentum conservation is violated
routinely.

Here, we have reviewed how electron translation factors are
introduced into the surface hopping ansatz, and we have introduced
electron rotation factors. The former removes the translational com-
ponents of the derivative couplings, and the latter removes the
rotational components of the derivative coupling. These dressed
derivative couplings have been constructed in a reasonably phys-
ical way, and they are size consistent: One can be sure that one
will never produce a derivative coupling delocalized over two non-
interacting systems. If one uses the modified derivative couplings
presented above [Eq. (96)], one can be absolutely certain that
momentum rescaling will not break linear or angular momentum
conservation.

At this point, one more word is appropriate regarding the prob-
lem of electronic linear and angular momentum within the surface
hopping algorithm. Although so far we have focused mostly on the
rescaling direction after one hops, we have also noted in Eq. (51) that
the hopping rate itself is changed by the inclusion of electron transla-
tion factors. To that end, our opinion is that the electron momentum
problem will have a greater impact on the question of the rescaling
direction rather the question of when to hop. After all, in practice,
the effect of translation and rotation insofar as driving an electronic
transition is usually quite small.

Nevertheless, if one really wanted to, one could, in principle,
apply the ETF and ERF corrections above to the hopping rate as
well. However, one must be careful when doing so because no one
today calculates the derivative coupling in Eq. (9) when deciding
if to hop.1 Instead, the usual practice nowadays44,45 is to evaluate
the hopping rate numerically using the overlap of the electronic
states at different times. For instance, if one is moving from R(t)
to R(t + Δt), one calculates the overlap UJK = ⟨ΦJ(t)∣ΦK(t + Δt)⟩.
From this overlap, U, one can evaluate the hopping probability for a
time window dt by taking the matrix logarithm of U46 [and compare
with Eq. (9)],

ΓJ→K = 2 Re(
log (U)

dt
ρKJ

ρJJ
). (101)

In principle, one could add the ETF and ERF corrections above
in Eqs. (53) and (96) to the hopping expression in Eq. (101). In
practice, however, we note that many MD codes today insist that
at time zero, the total linear and angular momentum be zero and
this zeroing of the center of mass motion can solve many problems
automatically, e.g., the H-atom problem in Sec. III. More gener-
ally, if one runs a surface hopping calculation with nonzero nuclear
linear and/or angular momentum, when calculating the hopping
rate from Eq. (9), one usually translates and rotate the molecu-

lar geometries between time steps so as to make sure that the two
geometries are maximally aligned with the same center of mass.
These standard rules of thumb (which have nothing to do with the
theory described above) should partially mitigate the momentum
conservation problem encountered when hopping.

Looking forward, Eq. (96) is incredibly easy to implement and
should be broadly applied in the community. That being said, a few
interesting questions remain as of yet, unanswered, and will need
further research. First, the present theory has relied on translational
and rotational invariance of the total Hamiltonian (electronic plus
nuclear). Thus, these results do not hold in the presence of an exter-
nal electric or magnetic field: understanding how to properly evalu-
ate the overall translational motion and angular momentum within
such an external field is not obvious. Second, as mentioned above,
our treatment above excluded the possibility of any spin–orbit cou-
pling; we specifically did not treat the case where the electronic
angular momentum of an eigenstate was nonzero, which will lead to
further complications. For example, recent work47 has demonstrated
that Berry forces of the form

FAα
J = 2h̵ Im

⎛

⎝
∑
KBβ

dAα
JK dBβ

KJvBβ
⎞

⎠
(102)

must be included in order for Born–Oppenheimer motion along a
single Kramer’s adiabat to conserve angular momentum. Clearly,
in such a case, one cannot make the crude approximation for the
derivative coupling as in Eq. (96) and simply ignore all electronic
and spin angular momentum. Third, the situation for photoemis-
sion of electrons is equally problematic; clearly, in such a case, one
should not simply ignore the electronic momentum in the context
of nonadiabatic dynamics.

In conclusion, as is well known, the standard surface hopping
algorithm ignores many nuances of nonadiabatic dynamics. In the
present paper, we have focused on one such omission: the neglect
of electronic and angular momentum. Recovering a surface hopping
algorithm that conserves momentum really boils down to finding
a meaningful momentum rescaling direction, and here we have pre-
sented Eq. (96) as one reasonable option. In the future, going beyond
standard surface hopping and accounting for electronic momenta
appears to be an extremely fertile area for theoretical development,
especially given recent heightened attention to chiral induced spin
selectivity48–50 and the need to understand the coupling of electronic
and nuclear spins more broadly in spin-lattice relaxation.51,52 As dis-
cussed in the Appendix, phase space approaches53,54 (e.g., PSSH) are
extremely interesting candidates for solving these problems, but any
and all other solutions must also be investigated.

ACKNOWLEDGMENTS
This material is based on the work supported by the National

Science Foundation under Grant No. CHE-2102402.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

J. Chem. Phys. 159, 114120 (2023); doi: 10.1063/5.0160965 159, 114120-11

Published under an exclusive license by AIP Publishing

 26 N
ovem

ber 2023 23:01:57

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Author Contributions

Vishikh Athavale: Investigation (supporting); Software (lead);
Writing – review & editing (supporting). Xuezhi Bian: Writing –
review & editing (supporting). Zhen Tao: Writing – review & editing
(supporting). Yanze Wu: Writing – review & editing (supporting).
Tian Qiu: Validation (equal); Writing – review & editing (support-
ing). Jonathan Rawlinson: Writing – review & editing (supporting).
Robert G. Littlejohn: Conceptualization (supporting). Joseph E.
Subotnik: Conceptualization (lead); Formal analysis (lead); Fund-
ing acquisition (lead); Methodology (lead); Project administration
(lead); Supervision (lead); Writing – original draft (lead); Writing –
review & editing (lead).

DATA AVAILABILITY
The data that support the findings of this study are available

within the article.

APPENDIX A: GEOMETRIES USED

Here, we list the xyz co-ordinates (in Å) for the methanol
molecule studied in Sec. V as follows:

Atom x y z

C −0.652 998 783 9 0.022 929 874 8 −0.000 032 921 5
H −0.980 477 951 4 0.560 041 842 8 −0.916 513 031 9
H −0.980 097 808 8 0.564 936 590 5 0.913 717 837 9
H −1.127 527 589 3 −0.979 878 570 7 0.002 897 030 9
O 0.736 526 546 1 −0.133 385 711 5 0.000 018 902 2
H 1.113 883 684 3 0.784 406 580 4 −0.000 055 525 6

APPENDIX B: PHASE-SPACE SURFACE HOPPING
INTERPRETATION OF ELECTRON TRANSLATION

Interestingly, the result in Eq. (54) (which was derived above
using electron translation factors) can be established within a differ-
ent framework by working in coordinates where all coordinates are
chosen relative to the position of one given nucleus (here, denoted
RA). In such a case, we can imagine transforming from coordinates
(r1, . . . , rn, R1, . . . , Rn) to coordinates (r′1, . . . , r′n, R′1, . . . , R′n),

R′B ≡ RB − RA, (B1)

r′j ≡ r j − RA. (B2)

The corresponding relationships for the derivatives are

∂

∂r j
=

∂

∂r′j
, (B3)

∂

∂RB
=

∂

∂R′B
− δAB∑

j

∂

∂r′j
. (B4)

Simple algebra now shows that the total Hamiltonian

Ĥtot =∑
B

P̂B ⋅ P̂B

2mB
+ Ĥel, (B5)

Ĥel =∑
i

p̂i ⋅ p̂i
2me

+ V(r̂1, . . . , r̂n, R̂1, . . . , R̂n) (B6)

now transforms into

Ĥtot =∑
B

P̂′B ⋅ P̂′B
2mB

+ Ĥ′el, (B7)

Ĥ′el =∑
i

p̂′i ⋅ p̂′i
2me

+ V(r̂′1, . . . , r̂′n, R̂′1, . . . , R̂′n)

+
1

2mA
∑
i, j

p̂′i ⋅ p̂
′

j −
P̂′A
mA
∑

j
p̂′j. (B8)

The third and fourth terms in Eq. (B8) are the corrections induced
by the point transformation in Eqs. (B1) and (B2) The third term in
Eq. (B8) is the analogous of the mass polarization term (but is dif-
ferent because we use electronic coordinates relative to one specific
nucleus rather than the total center of mass); this term can easily
be grouped into the electronic Hamiltonian and dealt with (but it is
small). The fourth term in Eq. (B8) is more interesting. This term is
responsible for electron translation coupled with nuclear translation,
which cannot easily be grouped within the electronic Hamiltonian (if
we want Ĥel to be a function of the R’s only). However, if we make a
semiclassical ansatz and replace the quantum operator P̂A in Eq. (B8)
with the classical coordinate PA, we can include this term in the elec-
tronic Hamiltonian (which now depends on both the R’s and P’s).
Such “phase-space” electronic Hamiltonians have been explored in
different contexts within surface hopping recently.53,54 If we then
treat the term ( P′A

mA
∑ j p′j) perturbatively and, as above, consider the

form of the Hamiltonian matrix element HJK that enters into Eq. (8)
for the hopping rate, we will find the term −i

̵h ∑μ,ν,A,α DJK
μνvAαS̃Aα

νμ
for nucleus A [which is the same correction as we found above in
Eq. (49)]. Note, however, that, in principle, if we wanted to repro-
duce the electron translation factors outlined above in Eq. (53), we
would need to perform a different calculation for each nucleus A.

The bottom line is that when we want to consider hopping
between electronic states semiclassically and we want to ignore elec-
tronic momentum, the ETF dressed derivative coupling in Eq. (53)
is a good first order approximation. That being said, a phase space
approach offers a more rigorous starting point for more accurate
treatments that seek a more complete account of both electron
and nuclear momentum, and in the future, one should be able to
use a single, rigorous phase-space Hamiltonian to recover (angu-
lar and linear) momentum conservation rather than the set of
nucleus specific Hamiltonians described above that simply repro-
duced our description of ETFs. Most importantly, in the future,
such phase space53,54 approaches may well be promising for treat-
ing the angular momentum problem where there is spin–orbit
coupling and one cannot make the approximations described in
Secs. IV and VI.
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APPENDIX C: LAGRANGE MULTIPLIERS AS A NAIVE
APPROACH TO ETFS AND ERFS

In the main body of the text above, we have shown how to con-
struct ETFs and ERFs heuristically. Here, we will show that the final
results [Eqs. (62) and (96)] are not the obvious expressions derived
from Lagrange multipliers. For the sake of notational simplicity, we
use bold symbols below to represent column vectors in R3.

1. Electron translation factors
We begin with ETFs and we will show that using Lagrange mul-

tipliers leads to Eq. (62) above. Given the derivative coupling vectors
dB, one would like to apply small corrections that force ∑B dB

= 0.
One may choose to modify dB in the following way:

d̃ B
= dB

+

√

∣dB
∣xB. (C1)

Mathematically, this corresponds to optimizing the function

f (x) =∑
B

ζBxB⊺xB (C2)

subject to the constraint

∑
B
(dB
+

√

∣dB
∣xB
) = 0. (C3)

This optimization can be achieved with the following objective
function with Lagrange multiplier λ:

L = 1
2∑B

ζBxB⊺xB
− λ⊺∑

B
(dB
+

√

∣dB
∣xB
). (C4)

Taking the derivative of L with respect to xB leads to

xB
=

1
ζB

√

∣dB
∣λ. (C5)

Inserting this expression into the constraint Eq. (C3) yields

∑
B
(dB
+
∣dB
∣

ζB λ) = 0 (C6)

⇒ λ = − ∑B dB

∑B
∣dB
∣

ζB

. (C7)

Therefore, we have

d̃ B
= dB

+

√

∣dB
∣xB (C8)

= dB
+
∣dB
∣

ζB λ (C9)

= dB
−
∣dB
∣/ζB

∑A ∣d
A
∣/ζA∑

A
dA, (C10)

which is identical to Eq. (62) when ζB
= 1.

Note that Eq. (C10) is not equivalent to Eq. (53).

2. Electron rotation factors
Next, we will show what the relevant minimization formula

would be when deriving ERFs. As before, we will find that the
final answer is different from the derived equation [Eq. (96)]. Given
the nuclear coordinates RB and the derivative coupling vectors dB,
one may again choose to correct dB by d̃ B

= dB
+
√
∣dB
∣xB and to

minimize∑B xB⊺xB, but this time subject to the constraints that

∑
B

RB
× (dB

+

√

∣dB
∣xB
) = 0, (C11)

∑
B

√

∣dB
∣xB
= 0, (C12)

where “×” is the vector cross product symbol. For any two column
vectors A and B in R3, the cross-product is defined by

(A × B)α
=∑

βγ
ϵαβγAβBγ. (C13)

Similar to the case of ETFs, the optimization can be achieved
with the following objective function, now with Lagrange multipliers
λ1 and λ2:

L = 1
2∑B

xB⊺xB
− λ⊺1∑

B
(RB
× dB

+

√

∣dB
∣RB
× xB
)

− λ⊺2∑
B

√

∣dB
∣xB. (C14)

Again, taking the derivative of L with respect to xB leads to

xB
=

√

∣dB
∣λ1 × RB

+

√

∣dB
∣λ2 (C15)

To solve for λ1 and λ2, we substitute xB into the constraints
Eqs. (C11) and (C12),

∑
B

RB
× dB

+∑
B
∣dB
∣RB
× (λ1 × RB

) +∑
B
∣dB
∣RB
× λ2 = 0, (C16)

λ1 ×∑
B
∣dB
∣RB
+ λ2∑

B
∣dB
∣ = 0. (C17)

From Eq. (C17),

λ2 = −
λ1 ×∑B ∣d

B
∣RB

∑B ∣d
B
∣

. (C18)

Let

WB
=

√

∣dB
∣RB, (C19)

W = ∑B ∣d
B
∣RB

√
∑B ∣d

B
∣
. (C20)

Inserting Eq. (C18) into Eq. (C16) yields

W × (λ1 ×W) −∑
B

WB
× (λ1 ×WB

) =∑
B

RB
× dB. (C21)
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Let us define the 3 by 3 matrix M,

M = (W⊺W −∑
B

WB⊺WB
)I

− (WW⊺
−∑

B
WBWB⊺

), (C22)

where I is a 3 by 3 identity matrix. The solution to Eq. (C21) is

λ1 = M−1
(∑

B
RB
× dB
), (C23)

and the correction to dB is

d̃ B
= dB

+

√

∣dB
∣xB (C24)

= dB
+ ∣dB

∣(λ1 × RB
+ λ2) (C25)

= dB
+ ∣dB

∣λ1 × (RB
−
∑A ∣d

A
∣RA

∑A ∣d
A
∣
) (C26)

= dB
+ ∣dB

∣[M−1
(∑

A
RA
× dA
)]/(RB

−
∑A ∣d

A
∣RA

∑A ∣d
A
∣
). (C27)

Note that when one enforces a “centroid” condition (i.e.,∑B RB
= 0)

as in Ref. 13, Eq. (C27) can be reduced exactly to the result in Eq. (11)
in Ref. 13, provided we do not weight the correction term xB by

√

dB

(and thus sacrifice size consistency). Either way, we emphasize that
Eq. (C27) is not equivalent to Eq. (96).

As a sanity check, one can easily show that these expressions
satisfy Eqs. (C11) and (C12) as follows: For checking Eq. (C11),

∑
B

RB
× d̃ B (C28)

=∑
B

RB
× dB

+∑
B
∣dB
∣RB
× (λ1 × RB

)

−∑
B
∣dB
∣RB
× (λ1 ×

∑A ∣d
A
∣RA

∑A ∣d
A
∣
) (C29)

=∑
B

RB
× dB

+∑
B

WB
× (λ1 ×WB

) −W × (λ1 ×W) (C30)

=∑
B

RB
× dB

−Mλ1 (C31)

=∑
B

RB
× dB

−∑
A

RA
× dA (C32)

= 0. (C33)

As for checking Eq. (C12),

∑
B
∣dB
∣[M−1

(∑
A

RA
× dA
)] × (RB

−
∑A ∣d

A
∣RA

∑A ∣d
A
∣
) (C34)

= [M−1
(∑

A
RA
× dA
)]

× (∑
B
∣dB
∣RB
−∑

B
∣dB
∣
∑A ∣d

A
∣RA

∑A ∣d
A
∣
) (C35)

= [M−1
(∑

A
RA
× dA
)] × (∑

B
∣dB
∣RB
−∑

A
∣dA
∣RA
) (C36)

= 0. (C37)
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