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ABSTRACT
We examine the many open questions that arise for nonadiabatic dynamics in the presence of degenerate electronic states, e.g., for singlet-
to-triplet intersystem crossing where a minimal Hamiltonian must include four states (two of which are always degenerate). In such circum-
stances, the standard surface hopping approach is not sufficient as the algorithm does not include Berry force. Yet, we hypothesize that such
a Berry force may be crucial as far as creating chiral induced spin separation, which is now a burgeoning field of study. Thus, this Perspective
highlights the fact that if one can generate a robust and accurate semiclassical approach for the case of degenerate states, one will take a big
step forward toward merging chemical physics with spintronics.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039371., s

I. INTRODUCTION

The field of nonadiabatic dynamics is rich and well traversed.
Dating back to the basic Marcus/Hush/Bixon/Jortner theory of
electron transfer,1–3 chemists have continuously explored how elec-
tron transfer and electronic dynamics are intimately intertwined
with nuclear motion and nuclear relaxation. Nowadays, there is
immense literature on coupled electronic-nuclear (or so-called
“nonadiabatic”) dynamics;4–6 there are efficient codes for solving
exactly certain classes of nonadiabatic harmonic problems, i.e., spin-
boson problems;7,8 there are even a few semiclassical algorithms for
propagating nonadiabatic systems such that a seasoned chemist can
sometimes look at a given Hamiltonian and predict dynamics at
room temperature. Yet, in this Perspective, we will argue that many
questions remain within the realm of nonadiabatic dynamics, espe-
cially at the intersection with spin chemistry. In particular, much
of the progress cited above may need to be adjusted to account
for nonadiabatic dynamics in the presence of multiple, degenerate
electronic states.

A. What we understand so far: Semiclassical
nonadiabatic dynamics with real-valued,
non-degenerate electronic Hamiltonians

In order to understand the nature of semiclassical nonadiabatic
dynamics, consider a typical Hamiltonian of the form H = Hel + P2

2M ,
where Hel is the electronic Hamiltonian and P2

2M is the nuclear kinetic
energy. In order to propagate the Hamiltonian in time, we must
propagate both the electronic and nuclear degrees of freedom. Usu-
ally, propagating the electronic dynamics is the easy part. Given
that electrons move so much faster than do nuclei, for almost9 all
standard nonadiabatic approaches today, one propagates the elec-
tronic degrees of freedom using a predetermined nuclear position
and velocity,

ċj =
−i
h̵
ϵjcj −∑

k

P
M
⋅ djkck. (1)

Here, d(R) is the matrix of derivative couplings, dαjk = ⟨Φj∣
∂

∂Rα
Φk⟩,

that captures how the adiabatic states {∣Φj(R)⟩} change with
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nuclear position. The adiabatic states are the eigenstates of the
electronic Hamiltonian [Hel

(R)∣Φj(R)⟩ = ϵj(R)∣Φj(R)⟩], and the
electronic wavefunction is expressed in the adiabatic representation
[∣Ψ(t)⟩ = ∑j cj(t)∣Φj(R(t))⟩].

The difficult part of nonadiabatic dynamics is the feedback
mechanism, whereby the fast electronic motion induces changes in
the much-slower nuclear motion. Nowadays, there are two stan-
dard paradigms for incorporating such feedback and establishing
equations of motion for the nuclei:

1. The oldest technique is mean-field theory.10 Mean-field theory
stipulates that one moves with the mean-field or average force,

Ṗ = −⟨Ψ∣
∂Hel

∂R
∣Ψ⟩ = −∑

j

∂ϵj
∂R
∣cj∣2 +∑

jk
(ϵj − ϵk)djkcjc

∗

k . (2)

Equations (1) and (2) are the so-called Ehrenfest equations
of motion. Today, there are effectively many variations of
the Ehrenfest inspired equations above. For instance, these
same equations can be derived by a Meyer–Miller–Stock–
Thoss (MMST) transformation11–13 or by the Poisson bracket
mapping equation (PBME) approximation to the quantum–
classical Liouville equation (QCLE).14,15 In general, one theme
of semiclassical quantum dynamics is that, in many con-
texts, one can simulate nonadiabatic dynamics by propagat-
ing the Ehrenfest equations of motion but sampling over
the correct initial conditions in phase space so as to simu-
late the correct initial wavepacket and then windowing the
results.16

2. Apart from mean-field theory, the other standard approach to
nonadiabatic dynamics today is surface hopping.17 According
to Tully’s fewest switches surface hopping (FSSH) algorithm,18

one propagates the electronic degrees of freedom according to
Eq. (1) but propagates nuclear degrees of freedom along one
“active” adiabatic surface, denoted λ,

Ṗ = −
∂ϵλ
∂R

. (3)

In order to account for electronic transitions, one switches
between active adiabatic surfaces stochastically. Note that
when an electronic transition occurs, one must rescale
momenta in the direction of the derivative coupling, d. All
downward transitions are allowed, but for upward transitions,
one must have enough kinetic energy; otherwise, the transition
is forbidden.

Using these two approaches, over the last few decades, theo-
retical chemists have learned a great deal about the nature of quan-
tum dynamics in the presence of a classical bath. Beyond design-
ing improved algorithms [e.g., partial linearized density matrix
(PLDM) and19,20 ab initio multiple spawning (AIMS)21–23], theoreti-
cal chemists have used the Ehrenfest and FSSH paradigms to answer
some of the most interesting problems in theoretical chemistry
including the following:

1. The nature of detailed balance. Neither FSSH or Ehrenfest
dynamics satisfies detailed balance exactly. That being said,
on account of forbidden hops, FSSH dynamics can recover
detailed balance approximately,24,25 usually with a small error.
Standard Ehrenfest dynamics cannot recover detailed bal-
ance at all, but this problem can be remedied if either one
applies a windowing scheme in the proper basis26 or pre-
sumably if one collapses Ehrenfest dynamics to adiabatic
states.27,28

2. The nature of decoherence. Neither FSSH or Ehrenfest dynam-
ics can correctly capture key elements of decoherence, i.e.,
the way wavepackets separate after going through a nona-
diabatic curve crossing. In general, it is now appreciated
that for either algorithm, one must collapse the relevant
amplitude c⃗ to the correct adiabatic state following such a
crossing. If one can apply such a decoherence correction
correctly, both algorithms are dramatically improved; often
FSSH can then achieve quantitative accuracy for scattering
problems.29

3. The nature of rate theory and activated nonadiabatic processes.
Assuming that one can treat decoherence correctly,30 one can
construct meaningful theories of chemical reaction rates with
either Ehrenfest31 or surface-hopping32,33 dynamics. Both of
these methods can be employed to calculate slow thermal rate
processes.

As should be clear from the discussion above, over the last 60
years, many advances have been made as far as understanding the
nature of nonadiabatic dynamics. Indeed, the modern chemist can
run ab initio semiclassical atomistic calculations of electron and/or
energy transfer for realistic systems that are not too large34,35 and
thereby learn how nuclear motion can either promote or frustrate
electronic transitions. For the most part, one would not necessarily
be wrong to claim that the biggest impediment to simulate nonadia-
batic dynamics today is the problem of electronic structure—which
is perhaps why the U. S. Department of Energy has put forth so many
resources in recent years to calculate electronically excited states
energies and gradients.36

Despite this rosy outlook, however, the seasoned reader may
note that one key element is entirely missing from the analysis pre-
sented above: spin degrees of freedom and more generally degen-
erate states. Marcus theory does not address spin; Marcus’s key
realization was that electrons could give and take energy from a
bath of nuclear motion, and so spin did not enter his formula-
tion.37 Thus, one can wonder: Is spin merely a bystander dur-
ing the electron transfer process? Or during relaxation after pho-
toexcitation? This question has been taken up recently by several
leading chemists, especially Mai et al.38 and Granucci et al.39 who
have focused on intersystem crossing (ISC) dynamics with spin–
orbit coupling (SOC) between a singlet and a triplet. In this Per-
spective, we will argue that the presence of spin–orbit coupling
and/or degenerate systems dramatically increases the complexity
of nonadiabatic dynamics in not subtle ways that fundamentally
reflect new and very rich physics and that modeling nonadiabatic
dynamics with spin degrees of freedom and/or electronic degener-
acy represents a key opportunity for future discovery in physical
chemistry.
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II. THEORY: WHAT WE DO NOT UNDERSTAND
A. Two-state nonadiabatic dynamics
with complex-valued Hamiltonians

The simplest electronic Hamiltonian that goes beyond the stan-
dard photochemical problems described above (and that cannot eas-
ily be treated by surface hopping or Ehrenfest) is of the following
form:

Hel
(x, y) = A(− cos(θ(x)) sin(θ(x))eiWy

sin(θ(x))e−iWy cos(θ(x)) ),

θ ≡
π
2
(erf(Bx) + 1).

(4)

Hel in Eq. (4) reflects a system with one electron that can occupy
two-electronic states {∣a ↑⟩, ∣b ↑⟩}with spin–orbit coupling. In prin-
ciple, the full Hamiltonian should also include the {∣a ↓⟩, ∣b ↓⟩}
states (and be four dimensional), but here we assume that there is
no coupling between the ∣↑⟩ and ∣↓⟩ states. Note that Hel is complex-
valued because the spin–orbit coupling operator is complex-valued,
and we assume that the system includes an odd number of electrons
[such that the time-reversal operator(T) satisfies T2 = −I]. Mead
showed 40 years ago40 that in such a case, the Hamiltonian cannot
be made real.

Equation (4) represents a standard avoided crossing in the
x-direction but with two twists.

● First, for the Hamiltonian in Eq. (4), the adiabatic potential
energy surfaces are completely flat; a simple calculation
shows that the eigenvalues of Hel are ±A (Fig. 1). That being
said, note that the effective Landau–Zener parameter41 is
2πA
̵hBv (where v is the velocity of a trajectory in the reactive
x-direction). Thus, one can use Eq. (4) to model many

FIG. 1. The potential energy surfaces corresponding to Eq. (4). Note that the adi-
abatic curves are completely flat such that according to surface hopping,18 one
would predict that an incoming wavepacket on the upper adiabat should transmit
100%; this prediction is not correct because of Berry’s force.

different nonadiabatic regimes (adiabatic, nonadiabatic,
high-friction, etc.) by modifying A (the energy gap), B (the
inverse length scale for the crossing), or v (the nuclear
momentum). At the same time, one can also ignore the fact
that different adiabatic surfaces usually have different forces
(e.g., one electronic state might be repulsive and the other
attractive). In the end, using Eq. (4), one can isolate physical
effects as induced by the complex-valued nature of the dia-
batic coupling and especially the parameter W; such effects
are not usually considered within the standard nonadiabatic
dynamics problems.

● Second, although the magnitude of the diabatic coupling
sin(θ(x)) changes only as a function of x, the phase
of the diabatic coupling is modulated in the y-direction
by a parameter W—which makes the problem nontriv-
ially two-dimensional. Note that because Hel is complex-
valued, the derivative couplings are also therefore complex-
valued.42–45 This twist implies that one cannot use Tully’s
standard surface hopping approach to model dynamics
through the curve crossing in Eq. (4); after all, FSSH posits
that electronic hops should accompany momentum rescal-
ing in the direction of d46—which is impractical if d is
complex-valued.

In Fig. 2, we plot scattering results from Ref. 47. By compar-
ing exact data (black) against Tully’s standard FSSH (blue), we see
that FSSH fails miserably for this problem. After all, consider trans-
mission along the upper surface for the A = 0.10 case [Fig. 2(c)].
Here, if we initialize with px = py = 8, the exact total transmission
on the upper adiabat is close to 0%. That being said, because Tully’s
FSSH algorithm moves along adiabatic surfaces—and because those
adiabatic surfaces are flat—Tully’s FSSH algorithm predicts 100%
transmission. Standard FSSH fails miserably.

1. Abelian Berry curvature and force
In order to understand why FSSH fails, one can turn to Berry’s

1993 paper on geometric magnetism.49 There, Berry showed that
when the derivative coupling becomes complex, adiabatic motion on
surface j follows an effective, so-called “geometric” magnetic field of
the form

Fmag
j = 2h̵Im∑

k≠j
[djk(

P
m
⋅ dkj)]. (5)

For Hel in Eq. (4), this expression becomes (on the lower adiabat
0 and the upper adiabat 1) Fmag

j = (−1)j
̵hW
2m

∂θ
∂x sin(θ)(Py,−Px

).
Note that the Berry forces are equal and opposite in magnitude
and the direction for the lower and upper adiabats and the magni-
tude of the Berry force is proportional to the parameter W. Cur-
rently, very little is known from ab initio calculations about the
size of W for realistic molecules; however, it is known that near
certain conical intersections, the effective size of W can be very
large.50

Berry’s force is completely missing from Tully’s FSSH algo-
rithm. Nevertheless, the exact data (in Fig. 2) make it clear that
Berry force is real and, within a certain parameter regime, has

J. Chem. Phys. 154, 110901 (2021); doi: 10.1063/5.0039371 154, 110901-3

Published under license by AIP Publishing

 26 N
ovem

ber 2023 23:02:32

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

FIG. 2. Transmitted populations on the upper [(a)–(c)] and lower adiabatic surfaces [(d)–(f)] as a function of initial incoming momentum, px . In [(g)–(i)], we plot the average
momentum in the x-direction ⟨px⟩ that emerges on the upper adiabat. Here, W = 5 [in Eq. (4)], and for initial conditions, we set py = px . We plot three different values
of the parameter A, which should lead to adiabatic conditions (A = 0.10), diabatic conditions (A = 0.02), or something in between (A = 0.05). We plot exact dynamics
(black), standard FSSH data (blue), and FSSH with Berry force (red). Overall, standard FSSH fails dramatically here; FSSH with Berry force performs much better. If one
introduces a scheme to minimize the number of hops (so-called “backtracking”), one can do even better48—though this latter approach is so far not general (data from
Refs. 47 and 48).

significant consequences. To that end, in Ref. 47, we proposed
including Berry force in an ad hoc manner: within the context of
Tully’s FSSH algorithm, when propagating dynamics on adiabatic
state j, we propose that each trajectory should feel a total force equal
to the Born–Oppenheimer force FBOj = −

∂ϵj
∂R plus the Berry force

Fmag
j ,

FFSSH-Berryj = FBOj + Fmag
j . (6)

As shown in Fig. 2, inclusion of Berry force can lead to a very
large correction and results that are closer to exact. In fact, for the
adiabatic case (A = 0.10), Berry-corrected FSSH is accurate. That
being said, Berry-corrected FSSH still fails in the nonadiabatic limit
(A = 0.02).

In the future, even for systems with two electronic states,
developing improved FSSH protocols will be essential. Recently, we
proposed one such protocol (so-called “backtracking”), which was
designed to minimized hops and can sometimes achieve improved
branching ratios (e.g., see the results in Fig. 2). Nevertheless, this

approach is not yet general and likely will need to be adjusted to
handle more realistic Hamiltonians, e.g., when the adiabatic surfaces
are not flat as in Eq. (4).

B. Nonadiabatic dynamics with degeneracy
(real-valued or not): Intersystem crossing

One of the most interesting features of ISC is the existence
of highly degenerate states. Consider the simplest process: a sin-
glet converting to a triplet. Formally, this transformation requires
at least four states since the triplet is (obviously) triply degener-
ate. The need for a four-state model implies that simple two state
models (like Marcus theory37,51) need not necessarily be applica-
ble. Interestingly, over the last ten years or so, even though there
has been a great deal of research into the nature of ISC dynam-
ics, theorists have mostly avoided the question of degeneracy. For
instance, in their pioneering article on FSSH with ISC,39 Persico
et al. made progress by reducing singlet–triplet dynamics to a 2 × 2
Hamiltonian, thus ignoring all Berry phase effects. Mai et al.38,52 and
Curchod et al.53 have allowed for degeneracy when propagating the
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electronic Schrödinger equation but have not considered the effect
of Berry force when propagating nuclear dynamics.

At first glance, one might presume that degeneracy need not be
important for semiclassical nonadiabatic dynamics. After all, on the
one hand, why should standard surface hopping care about degen-
erate states? Degenerate states have the same adiabatic forces, and so
the presence of parallel surfaces would not seem to be a road block.
On the other hand, Ehrenfest dynamics are optimal when surfaces
have similar forces; again, the presence of degeneracy should not
be problematic. Indeed, Levine and Fedorov had success working
with variants of Ehrenfest dynamics applied to problems with dense
manifolds of electronic states.54 Nevertheless, one must wonder:
If one finds indistinguishable degenerate states (that preclude any

meaningful derivative coupling), can the entire FSSH ansatz really
be correct? As it turns out, we will now show that surface hopping
can dramatically fail in the presence of degeneracy—even for a
real-valued Hamiltonian with an even number of electrons and
time-reversal symmetry.This conclusion also sheds light on the FSSH
failures for the two-state, complex-valued Hamiltonian problem
above since the two-state Hamiltonian can be viewed as a subsystem
in a degenerate four-state system (see the Appendix).

To begin our analysis, consider the extension of the elec-
tronic Hamiltonian in Eq. (4) to a four state model (in order to
account for a singlet–triplet crossing). The corresponding electronic
Hamiltonian for ISC can be written down (in the basis ∣s⟩, ∣t+1⟩, ∣t0⟩,
∣t−1⟩) as

HISC
= A

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos θ(x)
1
2

sin θ(x)e−iWy i
√

2
sin θ(x)

1
2

sin θ(x)eiWy

1
2

sin θ(x)eiWy
− cos θ(x) 0 0

−i
√

2
sin θ(x) 0 − cos θ(x) 0

1
2

sin θ(x)e−iWy 0 0 − cos θ(x)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (7)

where, as above, θ ≡ π
2 (er (Bx) + 1). Equation (7) corresponds to a naive crossing between a singlet and a triplet. Note that through a trivial

(constant) change of basis with

U =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0
1
√

2
0

1
√

2
0 0 i 0

0
1

i
√

2
0 −

1
i
√

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (8)

this Hamiltonian can be made entirely real,

H̃ISC
= A

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos θ(x)
1
√

2
sin θ(x) cos(Wy)

1
√

2
sin θ(x)

1
√

2
sin θ(x) sin(Wy)

1
√

2
sin θ(x) cos(Wy) − cos θ(x) 0 0

1
√

2
sin θ(x) 0 − cos θ(x) 0

1
√

2
sin θ(x) sin(Wy) 0 0 − cos θ(x)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9)

The adiabatic energies corresponding to Eq. (7) [or equiva-
lently, Eq. (9)] are plotted in Fig. 3(c). The largest and smallest eigen-
values of H are flat: E1 = −A and E4 = A. The middle two eigenvalues
(E2,3) are doubly degenerate. Because the Hamiltonian can be made
entirely real, one might presume that the Berry force [from Eq. (5)]
must be zero. Nevertheless, such a prediction is incorrect. To see
this fact, consider the case where a wavepacket is incoming along
the singlet state as shown in Fig. 3(a). At low velocities, one finds a
very interesting result: if the wavepacket approaches the crossing at
x = 0 in a perpendicular fashion, the incoming wavepacket splits into
four daughter wavepackets: there is some reflection on the ∣s⟩ state,

the ∣t1⟩ transmits upward with Py = +W, the ∣t0⟩ transmits straight
across with Py = 0, and the ∣t−1⟩ transmits downward with Py = −W
[see Fig. 3(b)].

The conclusion from Fig. 3 is that even though the Berry
force expression in Eq. (5) can be made zero for each state, a
nuclear wavepacket that undergoes ISC will split into three daugh-
ter wavepackets, and each daughter wavepacket will move along a
trajectory that is dictated by the spin of that wavepacket. This is
a blatant violation of the Born–Oppenheimer approximation and
suggests that one can achieve spin-selective reaction rate constants
(without an external magnetic field) and spin separation. Clearly,
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FIG. 3. Exact wavepacket data for the dynamics associated with the four-state model in Eq. (7), corresponding to a singlet–triplet ISC event. (a) A wave packet approaches
a crossing at x = 0 along the singlet manifold. (b) The wavepacket reflects on the singlet and splits into three daughter wavepackets that transmit along the triplet manifold
(with spin up deflecting upward, spin down deflecting downward, and spin zero not deflecting at all). (c) A zoomed-in plot of the adiabatic surfaces. For this model problem
[Eq. (9)], there is clearly a very strong Berry force effect, even though the Hamiltonian can be made real. Unfortunately, from the perspective of the adiabatic surfaces
in (c), it is not obvious how Berry forces emerge [and yield the dynamics in (b)]; in fact, such spin-dependent nuclear motion is completely neglected by standard FSSH
dynamics.

the dynamical implications of Berry phase (i.e., generalizations of
Berry force) are far more complicated in the presence of degenerate
states; the Berry-corrected surface hopping algorithm from Sec. II A
[which relies on Eq. (5)] will obviously fail to yield the correct
dynamics.

1. Non-Abelian Berry curvature and force
Within the electronic structure community, going back to the

work of Wilczek and Zee,55 it is known that for the case of multi-
ple, degenerate electronic bands, the nature of Berry phase becomes
far more complicated. To better understand the case of many states,
note that the Berry force in Eq. (5) is usually written down as

Fmag
j = Ωj ⋅ P, (10)

where Ωj is the Berry curvature,

Ωαβ
j =

∂

∂Rα
dβjj −

∂

∂Rβ
dαjj . (11)

The crucial point about the curvature in Eq. (11) is that if one mod-
ifies the sign or phase of adiabat j, ∣Φj(R)⟩ → ∣Φj(R)eig(R)⟩, the

quantity Ωαβ
j is unchanged.

Now, more generally, for a set of degenerate states, one requires
a measure of the curvature of the degenerate subspace: how does
the entire degenerate subspace change as a function of R? To make
progress, one requires a curvature that is invariant to the transfor-
mation,

(
∣Φ1(R)⟩
∣Φ2(R)⟩

)→ (
U11(R) U12(R)
U21(R) U12(R)

)(
∣Φ1(R)⟩
∣Φ2(R)⟩

), (12)

where U is an arbitrary, complex-valued unitary matrix. As is well
known,56 even though Eq. (11) does not suffice, there is an appro-
priate “non-Abelian” Berry curvature tensor of the form,

Ωαβ
jk =

∂

∂Rα
dβjk −

∂

∂Rβ
dαjk −∑

l
(dαjld

β
lk − d

β
jld

α
lk). (13)

Clearly, the Berry tensor with two or more electronic indices
[Ωαβ

jk in Eq. (13)] is much more complicated than the simple Berry

curvature with one index [Ωαβ
j in Eq. (11)]. In particular, the semi-

classical meaning of the Berry curvature is simple for one electronic
state (say j): one needs only to apply a built-in magnetic field along
state j in Eq. (10). However, there is no such simple dynamical inter-
pretation of the multi-state (“non-Abelian”) Berry curvature tensor
in Eq. (13). With multiple electronic states, one must realize an effec-
tive magnetic field that depends on the coherences between mul-
tiple electronic states. For a better understanding of ISC dynamics
within a surface hopping algorithm, one will require a significant
generalization of the semiclassical result in Eq. (10).

III. WHY ARE NONADIABATIC DYNAMICS
WITH DEGENERACY SO IMPORTANT
A. Intersystem crossing dynamics

ISC is one of the primary relaxation channels in photo-excited
systems. Because of antisymmetry and exchange, the lowest lying
molecular excited states are usually triplets.57 Thus, as far as under-
standing spin conversion, ISC is dictated by nuclear–electronic
dynamics not thermodynamics, and today there is an intense push
to understand: what is the probability of ISC and what is the time
scale for ISC? A slew of theoretical chemists either have investi-
gated or are currently investigating such questions with various
techniques—including surface hopping in (both spin-diabatic
and spin-adiabatic basis sets)38,39,52,53,58–63 and ab initio multiple
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spawning.53,64–66 However, by default, all of these techniques invoke
standard nuclear motion along adiabatic surfaces and do not include
the effects of Berry force. As a result, the literature has not accurately
addressed whether or not spin polarization emerges concurrently
with ISC, and yet this would also seem to be a key question for
future research—which brings us to the recent observations of chiral
induced spin selectivity (CISS).

B. Chiral induced spin selection (CISS)
As shown by Göhler et al., the original CISS effect was detected

by the following scenario: Imagine that one shines light on a gold
(Au) surface coated with (chiral) double stranded DNA (dsDNA).
If one measures the spin of the electrons ejected, one finds a spin
preference for one spin orientation vs another (all relative to the
principle axis of the dsDNA).67 Over the years, it has been shown
that this effect is not limited to dsDNA on gold: the effect occurs
for various molecules or materials.67–78 The basic molecular model
of CISS effect is shown in Fig. 4: somehow or another (and the
underlying physics remain debated), an electron undergoing chiral
transmission has a fundamental spin preference.

Understanding CISS is important because of the enormous
number of possible applications in biology and engineering

FIG. 4. A schematic model of the original CISS effect. The principle axis of the
chiral potential is in the z direction. Despite the small differences between spin
up and spin down electronic states, experimentally an electron moving through a
chiral potential is found to have a probability of transmission that strongly depends
on its spin (σz). One must wonder whether this spin-dependence is tied to nuclear
motion and Berry force effects.

science.79 For instance, on the science side, spin selectivity has been
observed for electron transfer in photosystem I, raising the possi-
bility that CISS may well play a role in the efficiency of this key
enzyme.80 On the technology side, if one can understand and manip-
ulate systems that display CISS, there is the possibility of creating
very small (<40 nm) spintronic logic devices that function through
the application of magnetic fields.81 Finally, a recent study of water
splitting on nanoparticles found that the presence of chiral lig-
ands can nearly double the exchange current82,83 which suggests a
role for using spin-dynamics to construct efficient electrochemical
pathways.

Now, a multitude of theories have been proposed to explain
the CISS effect.79,84–98 Approaches include (i) tight-binding atom-
istic simulations (where one assumes Rashba-like SOC)86–90 as well
as (ii) solid state calculations, whereby one investigates transport in
the context of band theory with SOC and a chiral potential.79,92–95

However, while these frameworks successfully predict spin polar-
ization in certain conditions, the fundamental physical force behind
CISS is not yet fully understood. Two essential items remain not fully
explained:

1. The magnitude of the observed spin polarization is not yet
consistent with theory. For most atomistic calculations, a SOC
much larger than a free carbon atom (several meV) is required
for theory to match experiment. For some models,79,94 one
must also require the energy of the incoming electron to
be comparable to the SOC gap; yet, experimentally, CISS is
observed for systems with thermal energy much larger than
SOC values.67–69,99

2. Most CISS models have not included incoherent charge trans-
port effects, even though studies have shown that electron
transfer in DNA has a large incoherent component.100–103

With these limitations in mind, we have a different perspective
as to the physical origins of CISS: even though no definitive iso-
tope experiment has yet been demonstrated, we will contend that
CISS may arise when nuclear motion becomes entangled with spin-
dependent electronic dynamics. In Ref. 104, for a simple 2D model
system, we showed that nuclear motion can lead to quantitative and
qualitative differences in spin-dependent transmission if a system
lacks spatial inversion (e.g., chiral systems) and that spin polar-
ization can be as large as ≈10% for parameters that are not too
exaggerated relative to commonly accepted electronic-based mod-
els of CISS.86,88 Although our simulations from Ref. 104 assumed
an electronically closed systems with an odd number of electrons,
the discussion in Sec. II B makes clear that the same effects can
arise (and can even be magnified), provided that one has several
degenerate electronic states (e.g., a singlet–triplet crossing). More-
over, recently we have demonstrated that spin polarization can arise
even for very small spin–orbit coupling—provided that there is a
conical intersection nearby to amplify the Berry force.50 Finally, as
will be discussed below in Sec. IV C, spin-polarization in the con-
densed phase should be enhanced when a system is out of equi-
librium so that frictional forces do not damp away all Berry phase
effects; indeed, for a typical CISS experiment, spin-polarization does
increase dramatically far away from equilibrium (i.e., with high
voltage).68,69,72,78,99 Altogether, one must wonder: Is nuclear motion
and the breakdown of Born–Oppenheimer perhaps the physical
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force underlying CISS (an idea which is now also being pursued
independently by Fransson105)?

IV. WHAT DOES THE FUTURE HOLD
A. New adiabatic approaches: Within or without
the quantum classical Liouville equation

The QCLE is the natural starting point for deriving semiclas-
sical theories of nonadiabatic dynamics. For a two-state model, e.g.,
for the Hel in Eq. (4), if we define AW

ij to be the partial Wigner trans-
form over the nuclear degrees of freedom, the QCLE reads as follows:

∂

∂t
AW

11(R,P, t) =∑
α

2Pα

Mα Re(AW
12d

α
21) −∑

α

Pα

Mα
∂AW

11

∂Rα

−∑
α
Fα

11
∂AW

11

∂Pα −∑
α

Re(
∂AW

12

∂Pα Fα
21) (14)

and

∂

∂t
AW

12(R,P, t) =
−i
h̵
(V11 − V22)AW

12 −∑
α

Pα

Mα d
α
12(A

W
22 − A

W
11)

−∑
α

Pα

Mα
∂AW

12

∂Rα −∑
α

1
2
(Fα

11 + Fα
22)

∂AW
12

∂Pα

−∑
α

1
2
Fα

12(
∂AW

11

∂Pα +
∂AW

22

∂Pα ). (15)

As shown by Kapral106 and by us,107 Tully’s FSSH algorithm can be
partly justified by comparison against the QCLE. Such a compari-
son clarifies how decoherence is missing from FSSH27,28,108–121 and
how FSSH can be generalized to simulate light-driven molecular
dynamics.122 Thus, in order to produce an accurate, practical, and
generalized surface hopping approach, one would like to derive a
series of appropriate quantum–classical approaches for complex-
valued and/or degenerate Hamiltonians.

Now, there has been some progress made so far in this regard.
In Ref. 123, we proved that the physics of the Berry force in Eq. (5)
are contained in the QCLE. Such a conclusion was made by making
the adiabatic approximation, whereby one solves for the coherence
elements A12 by assuming that damping is much faster than any
nuclear motion. This assumption leads to

AW
12 ≡
∑α ih̵

Pγ
Mγ d

γ
12(A

W
22 − A

W
11)

V11 − V22
+∑

α

ih̵
2
dα12(

∂AW
11

∂Pα +
∂AW

22

∂Pα ). (16)

Next, by plugging Eq. (16) into Eq. (14), one can derive adiabatic
dynamics on surface 1 with a Berry force,

∂

∂t
AW

11(R,P, t) = −∑
α

Pα

Mα
∂AW

11

∂Rα −∑
α
Fα

11
∂AW

11

∂Pα

+∑
α,β

2h̵ Im(dβ21
Pα

Mα d
α
12)

∂AW
11

∂Pβ , (17)

where one recognizes [from Eq. (5)] Fmag,β
1 = ∑α 2h̵Im(dβ21

Pα
Mα dα12).

For additional details, see Ref. 123. Note that before Ref. 123, it
was not at all obvious that the Berry force needs to arise from the
QCLE. After all, given that the Berry force [in Eq. (5)] is propor-
tional to h̵, whereas the QCLE ignores all terms of order O(h̵)
and higher, it was not clear whether or not the physics of Berry
force (Fmag) are contained within the structure of the QCLE [and
if not, one would require an altogether different dynamical start-
ing point (beyond the QCLE)]. The fact that the physics underlying
Fmag is already contained within the QCLE should give one hope of
establishing a rigorous, generalized, and practical surface hopping
algorithm.

Nevertheless, there is a caveat: the derivation of the Berry force
within the QCLE123 relies on implementing the adiabatic limit. The
most important question still remains: Can one derive a meaning-
ful surface hopping approach that includes the Berry force in the
nonadiabatic limit, where there will be a balance between the Berry
force and electronic transitions? Can we systematically derive a sur-
face hopping algorithm to account for degeneracy starting from the
QCLE?

B. A role for Ehrenfest dynamics
While this Perspective has largely assumed a surface hopping

perspective of nonadiabatic dynamics, the reader should note that
the QCLE can also be transformed into Ehrenfest dynamics if one
maps electronic states to harmonic oscillators.14 Traditionally, the
disadvantage of Ehrenfest dynamics has been a lack of branching18

and a lack of detailed balance.24 That being said, much of this fail-
ure can be ameliorated by improved sampling and windowing16,26

or enforced branching.124 Moreover, we have found that Ehrenfest
dynamics can account for Berry force in a mean-field sense for the
two-state problem.123

Thus, one must ask: Is not Ehrenfest (rather than surface hop-
ping) a better formalism for including Berry force? More specifically,
one must ask: Is Berry force perhaps embedded in the zero point
energy of the electronic degrees of freedom? Indeed, in unpublished
results, we have shown that some elements of Berry force can be
extracted from enhanced sampling of initial conditions; yet, as is
always the case for the nonadiabatic problem, the devil is in the
details and it is not yet known whether such an Ehrenfest-inspired
approach can work in general. Thus, exploring Berry force with
advanced nonadiabatic problems using Ehrenfest-like trajectories
(e.g., SQC,16 PLDM,19,20 and forward-backward trajectories125) or
trajectories that mix Ehrenfest with surface hopping126 or spawn-
ing127 dynamics represents another key path forward for future
theoretical research.

C. The elephant in the room: Nuclear friction
Wavepacket dynamics in a few dimensions can be excellent for

yielding intuition about isolated dynamics in the gas phase, but often
these dynamics are not relevant in the condensed phase where fric-
tion drives the system to equilibrium and eliminates any initially
prepared coherences between eigenstates. Moreover, according to
Eq. (5) within a two state model, a Berry force is sometimes just
an effective magnetic force, and magnetic field effects are usually
small in the condensed phase. For instance, transition state theory
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(TST) does not depend on the existence of a magnetic field;41 any
correction to TST based on a magnetic field would be a dynam-
ical correction, e.g., Kramer’s theory,128,129 and these corrections
tend to be modest. Note also that Fermi’s golden rule (FGR) rate
(Γ = 2π∣H∣2ρ) is agnostic to the distinction between the Hamiltonian
(H) and the conjugate of the Hamiltonian H∗; thus, at least with the
FGR theory, the Berry force cannot affect a rate constant. Indeed,
recent reviews of rate theories for ISC processes have not addressed
Berry forces.130–132 For all of these reasons, one must ask: In the con-
densed phase, will the dynamics described above (either ISC or more
generally dynamics with degenerate states) survive in the condensed
phase?

To that end, two points are worth noting. First, the Berry force
acting on a nucleus can be much larger than a magnetic field acting
on that same nucleus. To see this point, consider Eq. (5); the effec-
tive Berry magnetic field is proportional to the derivative coupling
d, and so, for instance, the effective magnetic field will diverge near
a conical intersection. In fact, we have recently shown that the mag-
netic field as caused by a conical intersection can be large enough
to induce complete spin separation in the context of a vacuum cal-
culation;50 thus, one must wonder if such complete spin separation
will have a significant signature in the condensed phase. One caveat
is that unlike an external magnetic field, the Berry force is a built-
in magnetic field whose direction rotates with the molecular frame,
and thus, even though Berry forces might be extremely large, one
can expect that experimentally confirming and isolating such Berry
force effects will be difficult.

Second, it is also worth emphasizing that many molecular pro-
cesses in the condensed phase do not proceed at equilibrium. For
example, photochemical processes are driven dynamically for at least
the first few hundred femtoseconds133 after stimulation by a photon;
the environment does not catch up or equilibrate in this time period.
What is the effect of Berry force? As another example, when current
runs through a molecule at finite voltage, that molecule will expe-
rience an explicitly nonequilibrium134–136 environment, and there is
no reason to believe that Berry forces (or any magnetic force) will be
damped away. Note that in the context of the CISS experiments on
DNA described above, spin-selectivity does increase as a function of
voltage.78 As discussed above, we believe this CISS effect may reflect
underlying Berry forces.

Clearly, there are many open questions about the effect of
Berry forces in the condensed phase, especially out of equilibrium,
and these questions reflect the richness of this area of theoretical
chemistry.

V. CONCLUSIONS
To date, there is no simple surface hopping algorithm for prop-

agating noadiabatic dynamics in the presence of a complex-valued
and/or degenerate electronic Hamiltonian, e.g., the Hamiltonian
that describe spin dynamics. There is very little data so far regarding
the performance of Ehrenfest-inspired algorithms or the exact fac-
torization approaches137,138 as far as treating Berry force. The lack
of such an algorithm strongly limits our ability to develop intu-
ition for such nonadiabatic transitions. Yet, given how many pro-
cesses involve degenerate states (e.g., all ISC processes) and the fact
that spin can be easily measured and spin-polarization seems to be

emerging more often than not through CISS-like processes, finding
improved computational nonadiabatic dynamics approaches would
appear to be a top priority (or a “growth area”) for young physical
chemists. It is our hope that this Perspective will offer some light
on and encourage new directions in this difficult but important new
research direction.
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APPENDIX: THE CONNECTION BETWEEN
A COMPLEX-VALUED HAMILTONIAN
AND A DEGENERATE HAMILTONIAN

In Sec. II A above, we reviewed how standard FSSH fails for
the case of a complex-valued two-state Hamiltonian. We argued
that FSSH fails because (i) there is no well-defined derivative cou-
pling direction for momentum rescaling and (ii) FSSH does not
include a Berry force. More generally, however, one can argue that
this failure can be traced to the failure of FSSH to treat degenerate
problems.

To make such a connection, consider a two-state electronic
problem with basis ∣a⟩, ∣b⟩ and a complex-valued electronic Hamil-
tonian,A. Let us now artificially introduce two more electronic states
(which may be the time-reversed states T∣a⟩,T∣b⟩) that are com-
pletely uncoupled from the original two states such that the total
Hamiltonian becomes

H = (A 0
0 A∗). (A1)

If one now changes basis with a transformation matrix

U =
1
√

2
(
I I
iI −iI), (A2)

the resulting Hamiltonian will be entirely real,

H̃ = ( Re(A) −Im(A)
−Im(A) Re(A) ). (A3)

Clearly, if one could propagate the four state dynamics in
H̃, one could propagate the correct nonadiabatic dynamics in A.
However, the matrices H and H̃ are doubly degenerate. As a
result, standard FSSH cannot successfully model the correspond-
ing dynamics. Thus, the failure of surface hopping dynamics to
treat complex-valued Hamiltonian can indeed be generalized to
the failure of surface hopping to treat electronically degenerate
Hamiltonians.
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