Xuezhi Bian

Graduate Student in Theoretical Chemistry

xzbian@sas.upenn.edu

My Github

Philadelphia, USA

**** 267 593 5725

My Linkedin

My Homepage

EDUCATION -

08/2019 - Present Ph.D. Candidate in Theoretical Chemistry

Philadelphia, PA

Department of Chemistry, University of Pennsylvania

Advisor: Prof. Joseph E. Subotnik

09/2015 - 06/2019 B.S. in Chemistry, Hongyi Honor Degree

Wuhan, China

College of Chemistry and Molecular Science, Wuhan University

Dissertation Advisor: Prof. Rui Yu

Berkeley, CA

Universisty of California, Berkeley

RESEARCH EXPERIENCE -

6/2020 - Present Graduate Researcher at University of Pennsylvania

Advisor: Prof. Joseph E. Subotnik

- Developing mixed-quantum classical algorithms for *ab initio* modeling of coupled spin-nuclear-electronic dynamics in molecular systems.
- Studying the nuclear Berry Curvature effect in non-adiabatic molecular dynamics and its implications in the angular momentum transfer process under the Born-Oppenheimer framework.
- Exploring spin-related chemical processes such as chiral-induced spin selectivity (CISS) through firstprinciple approaches.

09/2018 - 06/2019 Undergraduate Researcher at Wuhan Univeristy

Advisor: Prof. Rui Yu

• Design and realization of topological materials in classic electronic circuits systems.

10/2017 - 08/2018 Undergraduate Researcher at UC Berkeley

Advisor: Prof. Eran Rabani

· Optimization of range-separated hybrid functional in density functional theory.

AWARDS

John G. Miller Graduate Fellowship	2023
Penn Chemistry Graduate Committee's List	2019
Wuhan University Outstanding Student Scholarship	2017
Hongyi Scholarship of Wuhan University	2016, 2017
Wuhan University Second Prize Scholarship	2016, 2017

PUBLICATIONS -

- [1] Z. Tao, **X. Bian**, Y. Wu, J. Rawlinson, R.G.Littlejohn, J.E. Subotnik "Total Angular Momentum Conservation in Ehrenfest Dynamics with a Truncated Basis of Adiabatic States" *arXiv* 2311.16995 (2023)
- [2] V. Athavale, **X. Bian**, Z. Tao, Y. Wu, T. Qiu, J. Rawlinson, R. G. Littlejohn, J. E. Subotnik "Surface hopping, electron translation factors, electron rotation factors, momentum conservation, and size consistency" *J. Chem. Phys.* 159, 114120 (2023)
- [3] X. Bian, Z. Tao, Y. Wu, J. Rawlinson, R.G.Littlejohn, J.E. Subotnik "Total Angular Momentum Conservation in Ab Initio Born-Oppenheimer Molecular Dynamics" *Phys. Rev. B* 108.L220304 (2023)
- [4] Z. Zhou, Y. Wu, X. Bian, J.E. Subotnik "Nonadiabatic Dynamics in a Continuous Circularly Polarized Laser Field with Floquet Phase-Space Surface Hopping" *J. Chem. Theor. Comp.* 19(3), 718-732 (2023)
- [5] **X. Bian**, Y. Wu, J.I. Rawlinson, R.G. Littlejohn, J.E. Subotnik "Modeling Spin-Dependent Nonadiabatic Dynamics with Electronic Degeneracy: A Phase- Space Surface-Hopping Method" *J. Phys. Chem. Lett.* 13(32), 7398-7404 (2022)
- [6] Y. Wu, **X. Bian**, J.I. Rawlinson, R.G. Littlejohn, J.E. Subotnik "A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with electronic spin" *J. Chem. Phys.* 157, O11101 (2022) (Communication)
- [7] **X. Bian**, T. Qiu, J. Chen, and J. E. Subotnik "On the Meaning of Berry Force For Unrestricted Systems Treated With Mean-Field Electronic Structure" *J. Chem. Phys.* 156, 234107 (2022) (**Editor's Pick, JCP Editor's Choice 2022**)
- [8] **X. Bian**, Y. Wu, H.H. Teh, J.E. Subotnik "Incorporating Berry Force Effects into the Fewest Switches Surface-Hopping Algorithm: Intersystem Crossing and the Case of Electronic Degeneracy" *J. Chem. Theor. Comput.* 18(4), 2075-2090 (2022)
- [9] **X. Bian**, Y. Wu, H.H. Teh, Z. Zhou, H.T. Chen, J.E. Subotnik. "Modeling nonadiabatic dynamics with degenerate electronic states, intersystem crossing, and spin separation: A key goal for chemical physics" *J. Chem. Phys.* 154, 110901 (2021)
- [10] G. Miao, **X. Bian**, Z. Zhou, and J. E. Subotnik, "A "Backtracking" Correction for the Fewest Switches Surface Hopping Algorithm" *J. Chem. Phys.* 153, 111101 (2020) (Communication)

CONFERENCES

Poster	59th Symposium on Theoretical Chemistry at Zurich		2023
Poster	Gordon Research Conference on Electron Spin Interactions with Chiral Molecules and Materials		2023
Poster	International Conference on Nuclear Quantum Effects in Chemistry		2023
Poster	American Conference on Theoretical Chemistry		2022
TEACHING	EXPERIENCE	SKILLS	
Teaching assistant at Penn Chemistry : Chem 101 General Chemistry I (Fall 2019) Chem 102 General Chemistry II (Spring 2020)	Languages: Python, C/C++, MATLAB		
	•	Technologies: OpenMP, MPI, CUDA, PyTorch	