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ABSTRACT
Chemical relaxation phenomena, including photochemistry and electron transfer processes, form a vigorous area of research in which
nonadiabatic dynamics plays a fundamental role. However, for electronic systems with spin degrees of freedom, there are few if any appli-
cable and practical quasiclassical methods. Here, we show that for nonadiabatic dynamics with two electronic states and a complex-valued
Hamiltonian that does not obey time-reversal symmetry (as relevant to many coupled nuclear-electronic-spin systems), the optimal semi-
classical approach is to generalize Tully’s surface hopping dynamics from coordinate space to phase space. In order to generate the relevant
phase-space adiabatic surfaces, one isolates a proper set of diabats, applies a phase gauge transformation, and then diagonalizes the total
Hamiltonian (which is now parameterized by both R and P). The resulting algorithm is simple and valid in both the adiabatic and nonadiabatic
limits, incorporating all Berry curvature effects. Most importantly, the resulting algorithm allows for the study of semiclassical nonadiabatic
dynamics in the presence of spin–orbit coupling and/or external magnetic fields. One expects many simulations to follow as far as modeling
cutting-edge experiments with entangled nuclear, electronic, and spin degrees of freedom, e.g., experiments displaying chiral-induced spin
selectivity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093345

I. INTRODUCTION
Coupled nuclear–electronic, nonadiabatic dynamics underlie

critical aspects of many photochemical1–5 and electron transfer
processes.6,7 The basic premise is that, when electronic transi-
tions occur, energy must be provided or absorbed by the nuclei,
and there are a host3 of standard approaches for modeling such
nonadiabatic energy conversion, including Ehrenfest dynamics,8
quasi-classical mapping,9–11 surface hopping,12 multiple spawning,13

and exact factorization.14,15 Although not usually considered within
the chemical physics community, nonadiabatic effects can also arise,
which conserve energy within the context of molecular dynamics

(i.e., nonadiabatic effects can arise, which bend nuclear trajecto-
ries without changing their kinetic energy). For instance, single
surface on-diagonal Berry curvature effects can arise when there
is an external magnetic field and the Hamiltonian is complex-
valued.16–20 In such a case, the nuclei experience a Lorentz-like force
on their motion. In the adiabatic limit, this force is17

FB
n = ih̵Ṙ × (∇×DA

nn), (1)

where n is the adiabatic surface, Ṙ is the nuclear velocity, and
DA

nn is the derivative coupling (also called Berry connection) on
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surface n. More generally, one can argue that nonadiabatic pseudo-
magnetic field effects occur whenever there are degenerate or
nearly degenerate electronic states coupled together, e.g., when one
considers spin states coupled together with spin–orbit coupling
(SOC).21 These effects must be accounted for when modeling many
cutting-edge spin-related chemical and physical reactions, including
chiral induced spin selectivity (CISS)22,23 or other magnetic chemical
reactions.24

The simplest nonadiabatic model with spin–orbit coupling is
an avoided crossing of two doublets. In a basis {∣1↑⟩, ∣2↑⟩, ∣1↓⟩, ∣2↓⟩}
(1 and 2 labeling two diabatic states), the Hamiltonian reads25,26

H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E1 v + iλz 0 iλx + λy

v − iλz E2 −iλx − λy 0

0 iλx − λy E1 v − iλz

−iλx + λy 0 v + iλz E2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2)

where v is the diabatic coupling and λx, λy, λz are the three SOC com-
ponents. If one ignores λx and λy (the spin–flip terms), Hamiltonian
(2) becomes a pair of 2 × 2 complex-valued blocks corresponding
to spin up and down electrons. For molecular systems, the matrix
elements are all functions of nuclear coordinates that give rise to
complex-valued derivative couplings and the Berry curvature.

In order to better understand how nonadiabatic dynamics,
the Berry curvature, and the presence of spins does or does not
affect chemical dynamics, especially in ab initio calculations of real
systems, it is essential to have cheap, inexpensive semi-classical algo-
rithms. A proper algorithm must capture both the magnitude of a
momentum change upon hopping (in the spirit of Tully’s trajectory
surface hopping12) and the pseudo-magnetic Berry force that rotates
momentum (in the spirit of Berry’s half-classical dynamics17); to
date, there is no well established, reliable protocol. Previous attempts
to study the 2 × 2 complex-valued Hamiltonians by incorporating
the Berry curvature effect with Tully’s fewest switch surface hopping
(FSSH) have had some success21,27–29 but inevitably failed when the
nonadiabatic effects became strong enough.27,29

With these failures in mind, below we show that the solu-
tion is to run semiclassical phase-space surface hopping (PSSH)
calculations in the spirit of (but not equivalent to) Ref. 30. Accord-
ing to PSSH, trajectories move on phase-space adiabatic surfaces
E(R, P) that are functions of both nuclear position and momentum.
For a two-state problem, the PSSH approach effectively transforms
a complex-valued Hamiltonian into a real-valued Hamiltonian
while achieving an accuracy well beyond previously published
algorithms.27,29 Finally and equally importantly, a PSSH approach
is applicable for modeling dynamics in a magnetic field or under
illumination by circularly polarized light.31

II. THEORY
A. Construction of the phase-space Hamiltonian

Consider a general two-state nonadiabatic Hamiltonian,

Ĥ =
P̂ 2

2M
+ ĥel(R̂, r̂), (3)

where P̂ and R̂ are the nuclear momentum and position operators,
respectively, and r̂ represents the electronic degrees of freedom. A
common situation is an avoided crossing. The typical topology of
an avoided crossing is shown in Fig. 1(a): the two diabats cross each
other, and the adiabats are repelled by the diabatic couplings. For
this paper, we will focus on a very simple avoided crossing. We
assume that (1) the pair of states cross only once and (2) there is
a pair of “proper diabats” that coincides with the adiabats asymp-
totically, as shown in Fig. 1(a). Based on these two assumptions, we
can write the electronic Hamiltonian in the proper diabatic basis ∣χ0⟩

and ∣χ1⟩ in the vicinity of the crossing as

ĥel =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h0(R̂) V(R̂)eiϕ(R̂ )

V(R̂)e−iϕ(R̂ ) h1(R̂)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

where the proper diabatization requires ∣V ∣≪ ∣h0 − h1∣ outside the
crossing seam. Physically, this Hamiltonian can be mapped to a sin-
gle 2 × 2 spin block in the doublet–doublet crossing Hamiltonian
(2); by ignoring all spin-flips, we effectively choose a model that does
not obey time reversal symmetry.

Within the usual Born–Oppenheimer picture, one rotates the
Hamiltonian (3) to the adiabatic basis, where the nuclear motion is
coupled to electronic amplitudes via the derivative coupling terms.32

FIG. 1. (a) A schematic depiction of a curve crossing, where χ0 and χ1 are two
proper diabats. (b) The diabatic and (position-space) adiabatic surfaces of our test
model [see Eq. (14)] as well as typical phase-space adiabatic surfaces (shifted by
−P2
/2M) as functions of nuclear coordinate x. Note that the position-space adi-

abats are flat, while the phase-space adiabats have a barrier, a distinct signature
of complex-valued Hamiltonians. The parameters used to plot the phase-space
adiabats are W = −5, Py = 8, and χinit = χ0.
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However, here we will make a different choice: we will represent
Hamiltonian (3) in a pseudo-diabatic basis ∣ξ0⟩ = ∣χ0⟩, ∣ξ1⟩ = e−iϕ

∣χ1⟩

where we assign phases but not rotations to a set of diabats. The
result is a pseudo Born–Oppenheimer Hamiltonian,

ĤPD =
(P̂ − ih̵D̂)2

2M
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h0(R̂) V(R̂)

V(R̂) h1(R̂)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5)

where D̂ = −i∇ϕ∣ξ1⟩⟨ξ1∣ is the derivative coupling in this pseudo-
diabatic basis. Note here that iD̂, h0, h1, and V are all real-valued;
by performing a pseudo-diabatic transformation, we have turned
the complex-valued Hamiltonian (3) into a real-valued Hamiltonian
(5), which will enable us to use simple (or simpler) semiclassical
approaches for modeling. For a deeper discussion of the choice
pseudo-diabats in the two-state system, see the supplementary
material. Note also that, while this choice of phase is straightforward
for the two-state case, such a phase convention is impractical for a
general multistate dense Hamiltonian; future work will necessarily
need to address the case of many states all crossing together.

To implement semiclassical (surface-hopping) dynamics, we
first replace the nuclear operators in Hamiltonian (5) by their
classical counterparts (in the spirit of a Wigner transformation33,34),

HPD(R, P) =
(P − ih̵D(R))2

2M
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h0(R) V(R)

V(R) h1(R)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

Second, after diagonalizing Hamiltonian (6), we arrive at a basis
depending on both position R and momentum P,

HPD(R, P)∣ψj(R, P)⟩ = Ej(R, P)∣ψj(R, P)⟩. (7)

We will call the resulting eigenvalues and eigenvectors “phase-space
adiabats.”

In some sense, this new basis mimics what Berry has labeled
“superadiabats,”35,36 i.e., the basis recovered by first diagonalizing
the electronic Hamiltonian hel(R) and then second re-diagonalizing
the sum of adiabatic electronic energies EA(R), the kinetic term and
the relevant derivative couplings DA,30,35–37

Hsuper(R, P) =
(P − ih̵DA(R))2

2M
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

EA
0 (R) 0

0 EA
1 (R)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

Interestingly, Shenvi proposed phase-space surface-hopping
dynamics more than ten years ago (for real-valued Hamiltonians)
and the idea has some clear benefits (and a few problems).30,38 That
being said, we must be clear that the present basis {∣ψ⟩} defined
in Eq. (7) is not exactly the same as the superadiabatic basis: In
Shenvi’s approach, the superadiabats are obtained from diago-
nalizing the Born–Oppenheimer adiabatic Hamiltonian (which
includes derivative couplings) in Eq. (8), while in our present
approach the phase-space adiabats are obtained from diagonalizing
the pseudo-diabatic Hamiltonian (6). In fact, for a real-valued
Hamiltonian where ϕ ≡ 0, our pseudo-diabatic basis will always give

D ≡ 0 and the basis set {∣ψ⟩} is identical to the usual position-space
adiabats, while according to Shenvi’s approach, the tensor DA
is not zero—even for real-valued Hamiltonians. Thus, though
certainly related, for clarity, one should not confuse the concept of
a superadiabat and the concept of a phase-space adiabat; one must
also distinguish between Shenvi’s adiabatic PSSH algorithm and the
present pseudo-diabatic PSSH algorithm. More discussion can be
found below.

B. Phase-space surface hopping
Following Shenvi30 in spirit, we now propose to propagate the

semiclassical dynamics by moving nuclei along phase-space eigen-
values and then allowing for surface hops. At the beginning of the
simulation, we initialize a swarm of trajectories, each associated with
an electronic amplitude vector c and an active phase-space adia-
batic label n. Note that the phase-space momentum P is different
from the kinetic momentum Pkinetic =MṘ, in general, and should be
transformed according to

Pn = Pkinetic + ih̵⟨ψn∣D∣ψn⟩ (9)

before the simulation begins.
At each time step of the simulation, we construct Hamiltonian

(6) and diagonalize it according to Eq. (7) for each trajectory. The
trajectory’s equation of motion is then given by

Ṙ = ∇PEn, (10)

Ṗ = −∇REn, (11)

ċj = −
i
h̵

Ejcj − dR
jk ⋅ Ṙck − dP

jk ⋅ Ṗck, (12)

where dR
jk = ⟨ψj∣∇Rψk⟩ and dP

jk = ⟨ψj∣∇Pψk⟩ are the phase-space
analogs of the derivative couplings. Note that the dynamics above
conserve the energy of the relevant phase-space adiabat, i.e.,
dEn/dt = 0 along any given trajectory. Historically, Eqs. (10) and
(11) have been known as the eikonal method39 and have been
applied previously in modeling certain flavors of semiclassical
nonadiabatic dynamics.37,40

Similar to FSSH, within PSSH, trajectories are allowed to
change their active phase-space adiabatic label or “hop” between
phase-space adiabats at each step. The hopping probability from
surface k to j is computed according to Tully’s method,12,30

gk→j =
ρ̇jjΔt
ρkk

=
2Δt

h̵
Im{

c∗j
c∗k
(−ih̵dR

jk ⋅ Ṙ − ih̵dP
jk ⋅ Ṗ)}. (13)

From the perspective of a Monte Carlo process, Eq. (13) is the hop-
ping rate that is necessary to maintain consistency between ρjj and
the number of trajectories moving along surface j.41,42 Whenever a
hop from j→ k succeeds, we rescale the momentum along the direc-
tion of dR

jk (which is real-valued by construction) to conserve energy.
If such momentum cannot be found, the hop is frustrated and the
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trajectory keeps moving along the original surface. Note that, as with
the usual FSSH algorithm, frustrated hops are necessary to maintain
detailed balance.

Finally, to capture the decoherence of a reflected wavepacket,
we further employ the most naive decoherence algorithm possible,
similar to what was published in Ref. 29, i.e., we collapse the ampli-
tudes by setting cj → δnj if we find (P ⋅ dR

nj)(Pt=0 ⋅ dR
nj) < 0. Here,

n is the active surface. We will say more about decoherence in
Sec. IV.

III. COMPUTATIONAL RESULTS
To test the performance of our algorithm, we study the simplest

(standard) two-state {∣χ0⟩, ∣χ1⟩} electronic Hamiltonian associated
with two nuclear degrees of freedom, x and y,

hel(x, y) = A
⎡
⎢
⎢
⎢
⎢
⎢
⎣

− cos θ eiWy sin θ

e−iWy sin θ cos θ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (14)

where θ = π
2 (erf(Bx) + 1), A = 0.03, B = 3, and W = ±5. All the

above-mentioned parameters are in atomic units. The diabatic and
(position-space) adiabatic surfaces as well as typical phase-space

adiabatic surfaces are shown in Fig. 1(b). Note that the position-
space adiabats are completely flat, but the phase-space adiabats are
typically not. The initial wavefunction is chosen as a Gaussian,

Ψ0(R) = e−(R−R0)
2
/σ2
+iP0 ⋅R∣χinit⟩, (15)

where σ = 1, R0 = (−3,−3), P0 = (Pinit, Pinit), and χinit is either the
diabat 0 or 1. To make sure that the kinetic momentum is equal
to the phase-space momentum at t = 0, in our calculation, the
pseudo-diabats {∣ξ0⟩, ∣ξ1⟩} are chosen according to the initial diabat:
If χinit = χ0, then ∣ξ0⟩ = ∣χ0⟩ and ∣ξ1⟩ = ∣χ1⟩e−iWy; otherwise,
∣ξ1⟩ = ∣χ1⟩ and ∣ξ0⟩ = ∣χ0⟩eiWy. The exact quantum mechanics is
performed using a split-operator method43 with a 768 × 768 grid
inside a 48 × 48 box and a timestep of 0.05 a.u. For this problem,
the phase-space adiabats and diabats are equivalent as x → ±∞,
and, therefore, we can expect the outgoing wavepackets to have
an asymptotic momentum shift depending on the initial and the
final pseudo-diabatic states. For example, suppose a wavepacket
is incoming along ∣χ0⟩, and without loss of generality, we choose
∣ξ0⟩ = ∣χ0⟩ and ∣ξ1⟩ = ∣χ1⟩e−iWy. In such a case, we would expect
a −h̵Wŷ kinetic momentum shift for the wavepacket that ends
up on the ∣χ1⟩ surface, given the definition in Eq. (9) and the fact
that Ṗy = 0 [according to Eq. (11)]; for more discussion, see the
supplementary material.

FIG. 2. State-to-state transmitted and
reflected probabilities according to
an exact wavepacket simulation and
pseudo-diabatic PSSH and FSSH
approaches for our test system
[Eq. (14)]. We have tested four condi-
tions: W = 5 and initial diabat χinit = 0
[(a), (e), (i), and (m)]; W = −5, χinit = 0
[(b), (f), (j), and (n)]; W = 5, χinit = 1 [(c),
(g), (k), and (o)]; and W = −5, χinit = 1
[(d), (h), (l), and (p)]. Note that reflec-
tions are prevalent at a low incoming
momentum, which is a signature of Berry
curvature effects. The pseudo-diabatic
PSSH results agree reasonably well
with the exact simulations, while FSSH
results deviate significantly for reflection.
The parameters are A = 0.03, B = 3,
and M = 1000.
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The surface hopping simulations were performed with 104

trajectories with a timestep of 0.05 a.u. for each data point. The
initial positions and momenta for surface hopping simulations are
sampled according to the Wigner distribution of Ψ0(R). At each
point in time, the phases of the phase-space adiabatic basis can be
trivially chosen according to the “parallel transport” condition [i.e.,
⟨ϕj(t)∣ϕj(t + dt)⟩ ≈ 1 for all js]. Since the diabats and phase-space
adiabats are equivalent outside the crossing, the diabatic popula-
tion can be computed by counting trajectories on each phase-space
surface adiabat.

In Fig. 2, we compare the transmitted and reflected populations
on the different surfaces according to exact wavepacket simulations,
Tully’s FSSH approach,12 and our current pseudo-diabatic PSSH
simulations. We find that in many systems, a considerable fraction
of the population will be reflected when the momentum is relatively
low (e.g., Pinit < 12). If one assumes that trajectories follow position-
space adiabatic surfaces, such reflection must be a characteristic of
a Berry curvature effect; after all, the adiabatic forces here are com-
pletely flat. From the phase-space point of view, however, the reflec-
tion clearly arises from the barrier present in the phase-space adia-
batic surfaces; see Fig. 1(b). Moreover, according to Fig. 2, when W =
5 and one begins on the upper diabat, the reflected population is
distributed over both diabats 0 and 1, indicating that there can be
no clean separation of nonadiabatic dynamics into energy conserv-
ing and energy non-conserving effects. While the pseudo-diabatic
PSSH approach can capture most of the exact results qualitatively
(and often quantitatively), Tully’s FSSH algorithm has large errors.
For more benchmarking results and a further discussion of the
phase-space adiabatic surfaces, see the supplementary material.

IV. DISCUSSION AND PERSPECTIVE
The present results with pseudo-diabatic PSSH have demon-

strated a surprising degree of accuracy by successfully incorporating
both nonadiabatic effects and Berry curvature effects. However,
interestingly, the entire concept of Berry force has been replaced: we
no longer apply a pseudo-magnetic field to motion along an adiabat,
but rather use the relevant Hamiltonian dynamics as applicable to a
magnetic field. Thus, one must presume that the present approach
would be optimal for running surface hopping in an external mag-
netic field as well. By using phase-space adiabatic surface hopping,
it would appear that one can capture very new physics (all while
reducing to normal FSSH when a 2 × 2 Hamiltonian is real-valued).
In this same spirit, other semiclassical approaches, e.g., multiple
spawning, might also benefit by employing a pseudo-diabatic rep-
resentation and running along phase-space adiabats whenever one
encounters complex-valued Hamiltonians. More generally, we are
confident that the pseudo-diabatic PSSH algorithm proposed here
(or some version thereof) is the optimal framework for semiclas-
sical simulation of large, complicated nonadiabatic systems where
electronic spin effects are important.

Now, in making the claim above, our confidence is based on
several factors. First, over the past few years, our research group
investigated many different FSSH algorithms (incorporating Berry
curvature effects) within a host of two-dimensional models.29 We
found that for many problems, if one chooses the right rescal-
ing approach, FSSH can yield good results; however, the final

algorithm29 always felt overly complicated. By contrast, the present
PSSH algorithm is simple to understand and implement. Second, the
algorithm in Ref. 29 fails when the diabatic coupling is very small; in
such a case, the Berry force is not important and should not play a
role in FSSH; the present PSSH algorithm does not fail in this limit;
see Fig. S4 in the supplementary material. Third, the algorithm in
Ref. 29 also fails when W gets large (even though one might presume
that the Berry force grows larger and larger). This failure is
completely corrected by the present PSSH approach; see Fig. S5 in
the supplementary material. In short, the PSSH ansatz appears to
be the optimal approach moving forward; in the future, it might be
best to refer not to Berry forces per se but rather to nonadiabatic
dynamics in phase space.

Looking forward, our initial success here would appear to be
only the first step in a long road toward running on-the-fly nona-
diabatic dynamics with nuclei, electrons, and spin. There are many
obstacles that must be addressed and/or overcome. Here, we will list
a few (though the list is not exhaustive). First, the success of our
algorithm relies on the premise that there is an intrinsic diabatic
basis to dress [as in Eq. (4)].44 How should we select such an
optimal basis in practice? For an idealized, well-defined avoided
crossing problem as in Fig. 1(a), one can guess the correct proper
diabats almost intuitively. However, for systems with a complicated
topology, e.g., a conical intersection or a crossing between a singlet
and a set of triplets,45 picking the correct diabats would appear much
more difficult. Semiclassical dynamics can be very sensitive to the
choice of a diabatic basis, and a systematic understanding of the
impact of diabatization (as well as practical algorithms for choosing
diabats) is essential.

At this point, it is worthwhile to compare and contrast our
approach with Shenvi’s adiabatic PSSH algorithm.30 As mentioned
above, formally, the two algorithms have the same equation of
motion, but they correspond to different definitions of the phase-
space adiabats. This difference in definition arises because the two
algorithms were designed for distinct goals: in his construction of
PSSH, Shenvi’s goal was to minimize the number of hops within a
surface hopping framework; within our PSSH address, our goal was
to address the possibility of degenerate electronic states (as present,
e.g., with spin degrees of freedom). While Shenvi’s algorithm has so
far not been applied previously to complex-valued Hamiltonians,46

if one were to make such an attempt, one would necessarily need to
choose a gauge for the adiabats (before diagonalizing into a supera-
diabatic basis). In other words, our present need for a good diabatic
basis would correspond to the need for a good gauge within Shenvi’s
adiabatic PSSH algorithm. There is no free lunch, but future work
will need to run many simulations to make sure we find the most
stable approximations.47

Second, the question of decoherence must be addressed and
benchmarked. Within standard FSSH, decoherence appears to be
very complicated for complex electronic Hamiltonians. After all,
different Berry forces would appear to lead to wave packet separation
in the vicinity of an avoided crossing29—whereas, in the context of
real-valued Hamiltonians, decoherence arises only after wavepack-
ets leave the vicinity of a crossing.48–51 Within PSSH, however, it
would appear that this distinction is removed and decoherence again
is simple—wavepackets separate only after the packets leave the
crossing region now as driven by a difference in adiabatic phase-
space eigenforces. This hypothesis must be checked in the future.
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In the future, we will also need to address the question of velocity
reversal, which is known to be important for many simulations with
frustrated hops;48,52,53 see Fig. S3 in the supplementary material for
some preliminary data. Thus far, our test cases indicate that momen-
tum reversal and decoherence problems must be treated correctly for
more complicated systems, e.g., systems with a bounded potential
energy surface; see Fig. S3 in the supplementary material for some
preliminary data about decoherence and momentum reversal.

Third, for systems with more than two states and couplings
between each pair of diabats, the construction of pseudo-diabats
may be impossible if we insist on (i) a one-to-one mapping
between pseudo-diabats to diabats and (ii) a strictly real-valued the
electronic Hamiltonian. For example, consider the following
diabatic electronic Hamiltonian:

hel =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h1 V1eiϕ1 V2eiϕ2

V1e−iϕ1 h2 V3eiϕ3

V2e−iϕ2 V3e−iϕ3 h3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16)

If ϕ1,ϕ2, and ϕ3 are not related to each other, there is no choice of
simple pseudo-diabats for making hel real-valued. In such a case,
one will either need to accept a complex-valued pseudo-diabatic
Hamiltonian or apply a more general “pre-conditioning” diabatiza-
tion. Future research is clearly required on this front.

Finally, it is known that the surface hopping algorithm
can be derived roughly from the mixed quantum-classical Liou-
ville equation (QCLE)33,54,55 if one makes some very strong
approximations—e.g., the single-trajectory approximation, etc.
In this paper, upon hopping, we have followed the standard
procedure12,33 and conserved energy by rescaling momentum.
Nevertheless, according to Eq. (13), one might presume that
the more rigorous framework is to rescale both position and
momentum56 upon hopping.57 In the future, one will necessarily
need to investigate the formal foundations of phase-space surface
hopping (starting with the QCLE) and systematically analyze the
rescaling approach. Ideally, one would also like to connect with
multicomponent WKB theories as well.58,59

V. CONCLUSION
In summary, we have proposed a pseudo-diabatic phase-

space surface hopping (PSSH) algorithm for propagating nonadi-
abatic dynamics for complex-valued avoided crossing problems.
The approach is simple and intuitive, captures all Berry curva-
ture effects (without directly applying a pseudo-magnetic field),
and should be applicable for a wide-range of systems with coupled
nuclear, electronic, and spin degrees of freedom. In short, by per-
forming a basis transformation and generalizing Tully’s algorithm
to phase-space to treat complex-valued systems, we find results
that far exceed what is possible from any existing standard (surface
hopping/mean-field) semiclassical approach. Looking forward, we
are very hopeful that this algorithm can be applied to larger, ab initio
systems with spin-related phenomena, including chemical reactions
displaying magnetic field effects24 and chiral induced spin separated
dynamics.22

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion about the
choice of pseudo-diabats, an analysis of the phase-space adiabatic
surfaces, and a benchmark of different surface hopping schemes.
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