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ABSTRACT: Nonadiabatic chemical reactions involving continuous
circularly polarized light (cw CPL) have not attracted as much attention
as dynamics in unpolarized/linearly polarized light. However, including
circularly (in contrast to linearly) polarized light allows one to effectively
introduce a complex-valued time-dependent Hamiltonian, which offers a
new path for control or exploration through the introduction of Berry
forces. Here, we investigate several inexpensive semiclassical approaches
for modeling such nonadiabatic dynamics in the presence of a time-
dependent complex-valued Hamiltonian, beginning with a straightfor-
ward instantaneous adiabatic fewest-switches surface hopping (IA-
FSSH) approach (where the electronic states depend on position and
time), continuing to a standard Floquet fewest switches surface hopping
(F-FSSH) approach (where the electronic states depend on position and

frequency), and ending with an exotic Floquet phase-space surface hopping (F-PSSH) approach (where the electronic states depend
on position, frequency, and momentum). Using a set of model systems with time-dependent complex-valued Hamiltonians, we show
that the Floquet phase-space adiabats are the optimal choice of basis as far as accounting for Berry phase effects and delivering
accuracy. Thus, the F-PSSH algorithm sets the stage for future modeling of nonadiabatic dynamics under strong externally pumped

circular polarization.

1. INTRODUCTION

Nonadiabatic transitions between electronic states typically
arise in two different contexts. First, transitions occur naturally
through vibronic interactions when molecules visit regions of
configuration space where the Born—Oppenheimer approx-
imation is violated; second, transitions can be induced by
photoexcitations when an external incident light is coupled to
the transition dipole moment between these electronic states.
Both processes are very important in the field of photo-
chemistry and spectroscopy,' > and both processes need not
occur exclusively (i.e., both can occur at the same time). One
important difference between vibronic couplings and light-
induced couplings is that the latter is time-dependent; a typical
light source contains a central frequency @ such that the
coupling contains cos wt. Experiments have shown that strong
monochromatic continuous wave (cw) light can change the
landscape of potential energy surfaces and reaction channels by
introducing light-induced states, or Floquet states in several
different ways; e.g,, there is now experimental evidence of light-
induced conical intersections.’” "’

During the past 30 years, various semiclassical formalisms for
studying nonadiabatic phenomena have been demonstrated as
effective and reasonably accurate. More recently, many surface
hopping formalisms™ have been generalized to incorporate
time-dependent radiative couplings for light-induced non-
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L21729 One of the most intuitive formal-

adiabatic processes.
isms is to instantaneously calculate the adiabatic potential
energy surfaces, whereby one instantaneously diagonalizes the

light-matter Hamiltonian. As a result, time-derivative coupling
matrix elements Ty = <l//j(R(t), t)l%ll//k(R(t), t)) contain
contributions that arise from both nuclear motion and the
explicit time-dependence of the external field {ly (R(t), t))}.
In some cases, these resulting dynamics can perform
well,"*#*2? but the algorithm faces a difficult choice when
simulating energy absorption/emission from the external light;
usually, when deciding whether a hop is accepted or frustrated,
one compares the bandwidth and the energy differences during
the nonadiabatic transitions. Energy conservation as a function
of photon number is difficult to implement and so the
algorithm can lose accuracy.
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Apart from IA-FSSH, another possible generalization to the
time-dependent nonadiabatic problem is to apply Floquet
theory,”’ ' which transforms a time-periodic Hamiltonian
into a time-independent one with larger dimensions, leading to
Floquet fewest switches surface hopping algorithm (F-FSSH).
In our own experience, we have found that, in the presence of
monochromatic light (and provided the frequency of the light
is not very small), F-FSSH performs better in most cases than
IA-FSSH insofar as the algorithm better captures energy
absorption/emission, which is manifested as transitions
between Floquet states with different Fourier indices;
interestingly, when the frequency of light is small, IA-FSSH
performs better, as the Hamiltonian approaches a time-
independent form. For the most part, one can use these two
algorithms to reasonably capture most standard nonadiabatic
dynamics in a linearly polarized light field.

Now, if we wish to study dynamics under a circular polarized
light field (CPL) with large frequency, and if we adopt an
electric dipole Hamiltonian, it is fairly easy to conclude that, in
a Floquet representation, the light-matter coupling terms
become inherently complex-valued (and this complex-valued
nature cannot be eliminated by any simple gauge trans-
formation). For instance, for a two-level electronic Hamil-
tonian subject to an external circularly polarized laser, e.g,,

E(t) = E,cos wtk + Esin wtj

in the bare electronic basis and under the electric dipole
approximation, the light-matter coupling becomes

(WIH(t)lv) = D-E(t) = E, cos wt + HE, sin wt )
Here, D is the transition dipole moment between electronic
states lu) and |v). Note that this coupling term is completely
real and time-dependent. Next, if we apply a Fourier transform,
the resulting light-matter couplings in Floquet basis will be of
the form

(mulH(®)I(m + T)v) = pE /2 + inE,/2 @)
Here, m is the Fourier index. Clearly, these light-matter
couplings between Floquet states with +1 Fourier indices
difference are complex-valued. Note that the transition dipole
moment will usually depend on the nuclear configuration, and
hence, the phases of these coupling terms are not identical for
different nuclear configurations.

Unfortunately, the introduction of a complex-valued
Hamiltonian renders most of surface hopping schemes
inapplicable. On the one hand, it is widely acknowledged
that during a hopping event between two multidimension
potential energy surfaces, to enforce energy conservation, the
momentum of the tralectory is rescaled along the direction of
derivative coupling d.*” Thus, it is not obvious what direction
to choose when the derivative coupling d is complex-
valued.”* On the other hand, complex-valued derivative
coupling d can alter the nuclear motion by Berry phase effects.
As is well-known, Berry curvature emerges when the derivative
couplings become complex-valued, resulting in an effective
magnetic field for the nuclear degrees of freedom which the
standard surface hopping algorithm ignores. Interestingly,
mean-field Ehrenfest dynamics do not suffer from the phase
problems introduced by a complex-valued Hamiltonian,
because all quantities used for Ehrenfest dynamics are physical
observables and therefore always real-valued. However,
standard Ehrenfest dynamics does not capture branching® in
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the nuclear motion and would thus fail to capture at least some
Berry phase effects.’®” As far as we are aware, more
sophisticated Ehrenfest-inspired algorithms®® have not yet
considered or been tested on problems with nonzero Berry
curvature.

Over the past few years, several attempts have been made to
extend the standard fewest switches surface hopping (FSSH)
approach so as to treat a complex-valued Hamiltonian by
finding a good rescaling direction and incorporating Berry
phase effects.”>***>**~** Within our group, we have developed
two such algorithms:

1. FSSH with ad hoc Berry forces and “h + k” rescaling
direction in ref 41 (FSSH h+k). The basic premise of
FSSH h+k is to take into account the complex nature of
the derivative couplings d, which leads to a local effective
magnetic field known as the Berry curvature. For this
algorithm, the rescaling direction after a hop lies in the
plane spanned by the derivative of the norm of the
diabatic Hamiltonian elements h and the derivative of
the phase k (see section 2.2.3 for definitions).

2. Phase-space surface hopping algorithm in ref 42
(PSSH). The basic premise is to transform the
complex-valued Hamiltonian into a real-valued one
locally by introducing a phase factor that induces a
momentum shift during an electronic transition.

To date, neither of these algorithms (or any other FSSH
algorithm, as far as we are aware) has been successfully
extended so as to model the nonadiabatic dynamics of light
under a CPL laser field. The goal of this article is to create and
benchmark such extensions.

Finally, before concluding this section, we note that CPL is
not the only means by which one can introduce complex-
valued Hamiltonians (and Berry forces) into nonadiabatic
light-matter systems. More generally, Berry forces arise when
there is degeneracy of the Hamiltonian, and if one models
dynamics without external light—but with spin degrees of
freedom and spin—orbit couplings—one will also find that a
complex-valued Hamiltonian arises. Moreover, recently there
has been speculation that chiral induced spin selectivity (CISS)
effects might arise precisely through such coupled nuclear-spin
motion.**~* Thus, it is important to emphasize that all of the
theory presented below for modeling the dynamics of nuclei
and electrons in a circularly polarized light field can be equally
applied to modeling the dynamics of nuclei and electrons and
spin in a strong linearly polarized light field.

With this background in mind, an outline of this article is as
follows: In section 2, we first review in detail the TA-FSSH and
the Floquet-FSSH algorithms which were designed for a
system periodically driven by a linearly polarized light. Second,
we discuss how existing extensions of FSSH to treat complex-
valued Hamiltonian can potentially be incorporated into F-
FSSH. In section 3, we describe the model that we will use to
differentiate these different FSSH approaches, and we will offer
some visual intuition. In section 4, the results of the formalisms
discussed above are compared with exact quantum calcu-
lations. We conclude and discuss several intriguing questions
regarding F-PSSH in section S.

2. METHODS

2.1. Model Hamiltonian and Exact Solution. Let us
consider a molecule illuminated by continuous wave circularly
polarized light (cw-CPL). As discussed in section 1, the
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incoming light, in the electric dipole approximation, becomes a . i .

SR s PO pp_ . ’ = ——E(R, t) - 1hz P-dyc,/M
real-valued time-periodic coupling V(t) = V(¢ + T;,) between h s (8)

electronic states with period T} in the original electronic basis
(see eq 1). As shown in eq 2, in the Floquet basis, the coupling
becomes time-independent and complex-valued.

As discussed above, if spin degrees of freedom are present,
the vibronic coupling can also be complex-valued, due to spin—
orbit coupling or under the influence of an external static
magnetic field. To that extent, let us consider a Hamiltonian of
the form

() = T+ Ay + 90 = T+ A) )
Here 'ﬁ'R is the kinetic operator and I—AI:; is the time-
independent part of the complex-valued electronic Hamil-

tonian H,, which we write as
) 1

. Hyo(R)  Hp(R, t)
Hel(t) = o d

H{(R, t) H{(R) (4)

Here, the couplings between the two electronic states contain

two contributions: a time-independent vibronic coupling term

and a time-periodic light-induced coupling term:

H{y(R, t) = D(R) exp(ich(R))

+ Dy(R) exp(igh,(R)) cos wt (s)
Here, D, and D, are the effective time-independent and time-
dependent coupling strengths, and ¢,(R) and ¢,(R) are the
phases of the couplings. Note that this Hamiltonian (eq $) is
not of the exact same form as eq 1, but they are similar as we
discuss in section S.

The exact solution of such a time-dependent nonadiabatic
problem can be obtained by propagating the Schrodinger
equation on a grid using short time steps (df) and

“Hu(d ot each time step, where H,(t) is

exponentiating e
the time-dependent total Hamiltonian. The goal of this article
is to assess inexpensive, semiclassical approaches to such
propagation.

2.2. Four Semiclassical Methods for Time-Dependent
Coupled Nuclear-Electronic Dynamics. 2.2.1. Instantane-
ous Adiabatic Fewest Switches Surface Hopping. Let us
begin by reviewing the simplest extension to original FSSH for
model problems with a time-dependent Hamiltonian. As
proposed by Gonzalez and Marquetand,"”*****® the basic
premise is to use the instantaneous adiabatic potential energy
surfaces (that are explicitly time-dependent) to replace the
adiabatic potential energy surfaces (that are parametrized by
only nuclear configuration R). The nuclear degrees of freedom
are evolved by Newton’s equations of motion

(6)

VRE (R, t)
M

P=
()
Here, E, is the instantaneous, active adiabatic state of the
electronic Hamiltonian eq 4. The electronic degrees of
freedom are evolved by the electronic time-dependent
Schrodinger equations.

720

Here, d is the derivative coupling matrix element between
instantaneous adiabatic electronic states h//;) and ly;). In

practice, we evaluate the time-derivative matrix instead

dy, (R, 1) >

Ty = Pdy/M = <w,.(R, 0=

(9)

which contains contributions from both the time-dependent

Ay (R, t)
part <l//],(R, t) -

p
<U/](R; t)|VRl//k(R, t))ﬂ

Similar to FSSH, the hopping probability from active
instantaneous adiabatic state A to state j is

> and the nuclear motion part

—2Re(c/1cj*Tj/1) dt
8~ Ie,?

(10)

When a hop from state A to state j occurs, the momentum is
only rescaled along the direction of d;, if the energy difference
between state A and state j is not within the bandwidth of the
time-dependent driving. In practice, because d is complex-
valued, the momentum is rescaled along h (see eq 16).
2.2.2. Floguet Theory and Floquet Fewest Switches
Surface Hopping. In this subsection, we review Floquet
theory and Floquet fewest switches surface hopping (F-
ESSH).*>*7**°%*” For any problem with real-valued periodic

Hamiltonian H(t) = H(t + T,), the time-dependent elec-
tronic Schrodinger equation is

5 0 _ A
1hEI‘I’(t)) = H(t)I¥(t))

(11)
We define the Floquet Hamiltonian as
n N 0
Hi(t) = H(t) — ih—
and Floquet diabatic basis as
lmu) = exp(imwt)lu) (13)

Here, lu) = {l0), 11)} belongs to a set of orthonormal properly
chosen diabatic electronic basis. m is the Fourier basis index,
which represents the number of photons dressed by the
Floquet state lmy). Note that here and below, we will use a
superscript tilde to differentiate the “Floquet photon” index
(m =0, £1, ...) from the diabatic state index (Iu) = 10), 11)).

In the basis {lmy) }, the elements of the Floquet Hamiltonian

A, (t) become time-independent:

~

1 % N _
(Hel ) (mp) = ?0 /(; dt(uIHglmp) exp[—inwt]

- %0 fo ® GBI ) expl—i(n — m)wt]

+ 6,0

» 0

(14)
Hence, another possible way to propagate exact dynamics is to
project the initial wave function onto the Floquet states with
m = 0 and evolve the system with the propagator for the time-
independent Floquet Hamiltonian. For the complex-valued

https://doi.org/10.1021/acs.jctc.2c00948
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model Hamiltonians in this paper, the explicit matrix form is
written in Appendix A.

Now, let us briefly review the F-FSSH algorithm.””** The
nuclear degrees of freedom R, P are evolved by Newton’s
equations of motion (see eqs 6 and 7) along the active Floquet
adiabatic potential energy surface Ej (R) (eigenvalues of the
Floquet Hamiltonian in eq 14, see also Appendix A) of the
trajectory. Note that the Floquet adiabatic potential energy
surfaces do not explicitly depend on time (which is different
from IA-FSSH). Similar to standard FSSH, the electronic
degrees of freedom follow eq 8 except that (i) the propagation

follows the Floquet adiabatic quasi-energy E]F (R) (rather than
instantaneous active adiabatic energy E}-(R, t)) and (ii) the

dl//kF .
- 1S
dt

between Floquet adiabatic states (rather than Ty in eq 9).

Lastly, the hopping probability from the active Floquet state
A to state j is given by the analogue of eq 10. That being said,
there is the question of how to rescale momenta after a
hopping event because d); is complex-valued. To that end,
consider a general two-level system of the form

F

relevant time-derivative matrix element Tfk = f

N —cos 0 ¢? sin 0
Hel =V
—i(/)

e ¥sinf@ cosf

(15)

For this Hamiltonian, the derivative couplings lie in the vector
space spanned by the two directions h and k

h = V0 (16)

VRG(VRH'VRQ[’)

k=Wl = 0

(17)

We will follow the convention in ref 41 and 42 and rescale
momenta in the direction h = V0.

Finally, at the end of the calculation, there is always the
question of how to calculate electronic observables, e.g., the
population on a given electronic state. For standard FSSH,
there is no unique means of calculating such an observable, but
from both a theoretical and practical g)erspective, a density
matrix approach usually performs best.”® Below, we will avoid
such nuances and calculated electronic populations only in the
asymptotic limit where the diabats and adiabats are equal, and
where there is no light-matter coupling. In such a case, the final
electronic population can be evaluated (to a good approx-
imation) by summing up the populations of all Floquet states

that correspond to a given electronic state:*’
Ntraj
Probb® = 72"’ s
Iz traj
Ny (18)

2.2.3. F-FSSH Algorithm with Berry Force (or “FSSH with h
+k Rescaling”). The third algorithm that we have tested aims
to improve the F-FSSH algorithm by explicitly including Berry
forces along dynamics on one surface”™ and making sure that
momentum rescaling yields the correct asymptotic values. To
motivate such an approach and explain how the algorithm
works in practice, let us treat these two effects separately:

Berry Forces: Recall that Berry forces are effective magnetic
fields that emerge with complex-valued Hamiltonians. The
explicit form of the Berry force is

721

2

h
Ff = HZ Im(P/l'dj/l)d/lj
j

(19)

As discussed in ref 41, one can calculate the Berry force (eq
19) and apply it along a given FSSH trajectory.

Momentum Rescaling: For a complex-valued Hamiltonian, as
compared to a real-valued one, another relevant difference is
that the derivative coupling matrix d; becomes complex-
valued. Hence, the rescaling direction is no longer well-defined.
To that end, we will follow the ansatz in ref 41. First, even
though we have many Floquet states, we calculate the rescaling
direction only during a possible hopping event between the
active Floquet state and the target Floquet state during a
trajectory. Second, as discussed in ref 41, when the trajectory
has sufficient kinetic energy to hop, we add a component of the
momentum along the k (eq 17) direction, and then we rescale
the momentum (for energy conservation) along h (eq 16):

P =P, + (k)P — (G IM)P)hk + ah (20)
Here, {, is the first diabatic state in eq 15, lk) is the adiabat to
which the trajectory is hopping, « is the prefactor determined
by energy conservation. If there is no real solution to ¢, that is,
the energy is not sufficient to supplement the momentum
change, we use a test momentum P** to see if the kinetic
energy is consumed because of the Berry force (eq 19)

P, — ({GIAP — KGO )k + ph (21)

Here, ( is the initial diabat. If there exist a real solution to /3, we
set

test
P =

_Ph
Ih/*

Again, ¥ is determined by energy conservation.

The algorithm above is complicated and was developed
empirically out of necessity in order to match a set of data. The
intuition is that one ensures the correct asymptotic momentum
along k by depleting the momentum along h. That being said,
if the energy does not allow for a real-valued f, the hop is
frustrated (see section 3 for information about velocity
reversal). Finally, at the end of the calculation, we evaluate
the final electronic population in the same fashion as in eq 18.

2.2.4. Floquet Phase-Space Surface Hopping Algorithm.
In this subsection, we review our fourth candidate algorithm, a
combination of Phase-Space surface hopping (PSSH) together
with a Floquet FSSH formalism.*

Let us begin by reviewing the PSSH algorithm for two
electronic states and consider the problem in the form of eq
15. We will perform a local gauge transformation where we
introduce a phase on each electronic state (but without
rotating the states explicitly):>°

1) 15) [1 0 HI&,)]
= U =
LCD] {l@] 0 exp(=idh) || 1)) (23)

The electronic Hamiltonian (eq 15) then becomes real-valued:

. [—cos 0 sin 9}
Hzl = V

sin @ cos 0

(22)

(24)
and the kinetic energy part of the total Hamiltonian becomes
~ (P - inD)?
Tg=——"7""
2M (25)

https://doi.org/10.1021/acs.jctc.2c00948
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Figure 1. (Left) Floquet adiabatic potential quasi-energy surfaces and (right) Floquet phase-space adiabatic potential quasi-energy surfaces for our
model. The original F-FSSH and F-FSSH with Berry force algorithms run trajectories along the Floquet adiabatic quasi-energy surfaces; here, the
surfaces belonging to the same electronic state are parallel and have equal quasi-energy spacing. The Floquet phase-space adiabatic potential quasi-

A2
energy surfaces are parallel but are not equally spaced (because of the . terms in eq 30, resulting in W? and sz terms, see also Appendix B).
Note that the states drawn on the right are only for normal incidence (Py(t =0) = 0). For oblique incidence, the resulting potential quasi-energy

surfaces will also depend on Py(t =0).

Here, D = U‘P;_P = —iVg@l{)({l where { is the basis after

the gauge transform in eq 23. The basic idea of PSSH is that
one diagonalizes the Hamiltonian H(R, P) = H, + Ty that

depends on both position and momentum, and one then

moves along the corresponding eigenstates.

Now, let us consider the problem with time-dependent
couplings (in eq 5) and discuss how to construct the
corresponding F-PSSH equations of motion. Once the
Hamiltonian (in eq 4) is turned into a time-independent one
(as in eq 14), we construct a basis set with dimensionality
NoeNrouriers Where N, = 2 corresponds to the two electronic
states indices and N, is the truncated number of Fourier
indices at which the calculation converges (in our calculation
Neowier = 9 as m =0, +1, ..., £4). We seek a local gauge
transformation similar to eq 23 and a new basis:

[y 1810 & DT 2100y 2r0ly e 10y e Ty -y
(26)

where the Floquet Hamiltonian will be strictly real-valued.

Here, the ’

formation.
Unfortunately, for this model Hamiltonian (and presumably

labels the states after the local gauge trans-

most Hamiltonians), there is no local gauge transformation
under which the Floquet Hamiltonian is strictly real-valued.
One possible approximation then is to focus on the most
important couplings (i.e., those the couplings mixing populated
states that are relevant during a surface hopping calculation)
and render those couplings real-valued (or as real-valued as
possible). Framed mathematically, we seek diagonal matrices

U, and D, with the same dimension (N,;, Nppu) as the time-
independent Floquet Hamiltonian that make the original
Floquet Hamiltonian as close to real-valued as possible.

To construct such matrices explicitly, let us return to the
original Floquet diabatic basis, where the Floquet Hamiltonian
is of the form (same as eq 14):

722

~ 1 T N
[He ) (mp) = Fo /(; dt(UIH,(¢)Iu) exp[—i(n — m)wt]

+ 6,0, nhw

Ymn

(27)

with some complex-valued matrix elements arising potentially
from both vibronic couplings and light-matter couplings.
Equation 14 is written out in matrix form in Appendix A. Let
us suppose (without loss of generality) that the initial state
corresponds to 100). To make the Hamiltonian as real-valued as
possible, we will conjugate this Hamiltonian by a diagonal
matrix:

diag(q/{P)initialstate =100)

= [, et it 1 o7 T o0 (28)
diag(DF)im’tiaIstate= 100)
= [y —W, — wp; —wy; 0; w; W, + wy; wy; o] (29)

Here, w, = —iVgp, and w, = —iVy¢, arise from the phase
factors in the vibronic coupling in eq 5. Note that if the initial
state were different (e.g., 101)), a similar local gauge
transformation ((i{F)imtialstatezmn) could also be defined. For

more details about and an explicit representation of eqs 2729,
see Appendix B.

At this point, let us assume the Floquet phase-space
Hamiltonian is close to real-valued but depends on both
nuclear coordinates R and momenta P,

N 1 Ty N
[Ty oy = T fo AL (D)) expl—i(n — m)ot]

N

2m

ihP-D,

m

+ 0,0

uvmn

nhw (30)
F-PSSH then follows the same procedures as one would expect
when combining F-FSSH and PSSH. In a basis of boosted
(momentum-dependent) Floquet diabatic states (from eq 30),
one diagonalizes the momentum-dependent Hamiltonian and
obtains momentum-dependent Floquet adiabatic states, or

https://doi.org/10.1021/acs.jctc.2c00948
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W, =-5, init 0

W, =-5, init 1

W, =15, init 0

W, =+5, init 1

Trans 0

Trans 1

Refl 0

0.5

Refl 1

o\

20 40 20

40 20

| m— Exact —#— F-PSSH

F-FSSH h rescaling ======|A-FSSH |

Figure 2. Transmission and reflection probabilities at normal incidence (P(¢ = 0) = (P, 0)) for different choices of initial diabatic electronic states
(init O or init 1) and W}, = £5. As shown in all subfigures, the F-PSSH algorithm (blue line) yields the most accurate results as compared against the
exact results (black line). Note that for the cases with opposite time-dependent phase factors (W, = =5 vs W, = +5), the standard F-FSSH scheme
(green dotted line) predicts the same results (as does IA-FSSH). However, as shown by the exact results, these opposite W), cases are not identical
(because of the crossing at x = 1.5) and admit different scattering probabilities. Thus, this model problem highlights why one requires a
nonadiabatic algorithm that can correctly treat complex-valued Hamiltonians.

Floquet phase-space adiabats. All subsequent dynamics move
along these phase-space adiabats. In section 3 below, we will
present both the model problem and visualize the difference
between Floquet phase-space adiabats and the original Floquet
adiabats.

3. SIMULATION DETAILS

In this paper, we will focus on nonadiabatic models with two
nuclear dimensions, one light-induced avoided crossing and
one vibronic coupling induced avoided crossing. All parameters
are in arbitrary units. One last small note is now in order. In all
of the four algorithms discussed above, if a frustrated hop is
encountered, the trajectory is reversed along the rescaling
direction h if (P-h)(VREﬂEh) > 0,351

3.1. Model Problems. We choose the following diabatic
states

HE(R, t) = A tanh(Bx) (31)

H{(R, t) = —A(tanh(Bx) + C) (32)

Here, A = 0.1, B = 0.35, C = —0.9 as they cross near x = 1.5,
and the energy difference between them matches external
driving i@ = 0.18 near x = —1.5. For better convergence, the
time-dependent couplings (eq S) need to be localized near
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each type of crossings. Thus, we choose D,(R) and D,(R) to
be Gaussian functions centered around the two avoided
crossings respectively

D(R) = E exp(—(x — 1.5)*/2) (33)

Dy(R) = E exp(—(x + 1.5)*/2) (34)

In this paper, E = 0.02. We pick simple phase factors as
follows:

& =Wy,

b, = Wy,

These phase factors yield two reasonably strong regions of
effective magnetic fields. Note our notation: while lowercase
w,,;, (defined below eq 29) represents the gradient of the phase
¢,/ here we study a problem where both w, and w;, depend
on only one nuclear coordinate, y, and so ¢, has a gradient
along only one direction y; above and below, we have denoted
this number as W,

The relevant potential energy surfaces are presented in
Figure 1. The standard F-FSSH algorithm and F-FSSH with
Berry force algorithms evolve trajectories along the standard
Floquet states. These Floquet states are parallel and equally
spaced. In comparison, for the F-PSSH algorithm, the

W,=6 (35)

W, = £S5 (36)

https://doi.org/10.1021/acs.jctc.2c00948
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W, =-5, init 0

W, =-5, init 1

W =+5, init 0 W, =+5, init 1

Trans 0

Trans 1

Refl 0

Refl 1

| m—Exact —#— F-PSSH

Figure 3. Transmission and reflection probabilities for the case of oblique incidence (P(t = 0) = (P, Pyy)) for different light-induced phase
factors (W, = + S) and different initial electronic states (init O or init 1). The F-PSSH results overlap with the exact results in all figures. As in
Figure 2, standard F-FSSH (with h-rescaling) and IA-FSSH cannot capture the differences between W, = —5 vs W}, = +5, and the results are thus
inaccurate. Moreover, these two algorithms yield incorrect results in the low momentum regime P, < 20 a.u. Overall, the F-PSSH algorithm is

clearly the most reliable algorithm.

trajectories run along Floquet phase-space adiabatic states.
These states are also parallel, but are not equally spaced, as
shown by the dashed lines.

3.2. Initial Conditions. For the exact, F-FSSH, F-FSSH
with Berry force and F-PSSH calculations, we choose x(t = 0)
= —6.0 which is far enough from x = —1.5 such that the initial
diabats and adiabats have a one-to-one correspondence. For all
surface hopping algorithms, the initial coordinates and
momenta are sampled from the Wigner distribution of the
two-dimensional Gaussian wavepacket.

For our two-dimensional model, the effective magnetic fields
are parallel to the y axis. Thus, we will discuss two possible
incident angles, normal incidence (y(t = 0) = 0, P,(t = 0) = 0)
and oblique incidence at y(t = 0) = x, and Py(t =0)=P(t=0)
= P, with respect to the y axis in section 4.

3.3. Common Techniques. Before presenting our results,
here we will list a few useful tricks and techniques that we used
so as to simulate our calculations reliably and efficiently.

e Separation of classical and quantum time steps as in ref
52. We used a nuclear time step of 0.5 au and an
electronic time step is chosen dynamically.

e Matrix logarithm to calculate the time-derivative matrix
instead of derivative couplings.”>™®* This approach
allows for a larger time step without sacrificing accuracy.
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e Parallel transport by maximal phase alignments as in ref
63. Surface hopping within Floquet theory is especially
sensitive to the phases of the adiabatic states, and these
phases must be chosen accurately.

4. RESULTS

In this section, we first present the transmission and reflection
probabilities obtained by exact calculations, F-FSSH, IA-FSSH,
and F-PSSH. Second, we compare results between F-PSSH
and F-FSSH with Berry force.

4.1. F-PSSH vs Standard F-FSSH and IA-FSSH
Algorithms. 4.1.1. Normal Incidence. In Figure 2, we present
the transmission and reflection probabilities on electronic
states 0 and 1 for different W, and initial electronic states.
Several observations can be made.

First, in all of the subfigures, the F-PSSH results (blue line
with crosses) agree perfectly with the exact results (black solid
line). Second, standard F-FSSH (green line, labeled as F-FSSH
h rescaling) cannot capture the correct transmission
probabilities for the case W}, = —5 but does give a reasonably
good answer for the case W, = +5. Interestingly (and
incorrectly), F-FSSH predicts almost the same results for W,
= —5 vs W, = +5. In truth, however, exact scattering results are
different for these cases because the presence of a crossing
around x = 1.5 with complex-valued vibronic couplings (W, =

https://doi.org/10.1021/acs.jctc.2c00948
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Figure 4. Transmission and reflection probabilities for W = —5 with normal (P(t = 0) = (P,,;, 0)) and oblique incidence (P(t = 0) = (P, Pint))-
In this figure, we compare F-FSSH with h+k rescaling vs exact and F-PSSH results. Both of these algorithms include Berry force in some fashion,
and both are expected to perform well. In all figures here, we find that the F-FSSH with h+k rescaling algorithm can capture the correct
probabilities at high momentum (P, > 20) and is reasonably good at low momentum as well; nevertheless, the algorithm is outperformed by F-
PSSH in the low momentum regime where predicting the final P is crucial for capturing scattering probabilities. Nevertheless, if we were to plot F-
FSSH h+k rescaling data within Figure 2 and Figure 3, we would find that the algorithm predicts results just as accurately as does F-PSSH.

+6) breaks any symmetry in W. (If we were to set W, = 0, then
we would recover the same results for + W,). Third, the results
obtained by IA-FSSH (magenta line) algorithm are almost the
same as standard F-FSSH. In the low momentum regime with
W, = +5, IA-FSSH is less accurate than F-FSSH. As with F-
FSSH, IA-FSSH incorrectly predicts identical results for W, =
=5 vs W, = +5, which suggests that the algorithm will have
similar difficulties with complex-valued Hamiltonians.

4.1.2. Oblique Incidence. Next, in Figure 3, we present the
transmission and reflection probabilities for the case of oblique
incidence (P,(t = 0) = P,(t = 0) = P,,;;). This regime is a more
difficult test of a surface hopping algorithm. Similar to Figure 2,
F-PSSH does accurately recover the exact results in almost all
scenarios. In contrast, standard F-FSSH and IA-FSSH cannot
give satisfying results except in the high momentum regime
(Piie > 20 au.), where effectively P(t) is not sensitive to the
relatively small oscillations in phase (W,;, < P)) that each
trajectory experiences when moving along the initial electronic
state. Note that standard F-FSSH and IA-FSSH algorithms still
yield approximately the same results for opposite W, (W, = =S
vs W, = +5), as they lack the ability to capture the effects of
complex-valued couplings. Overall, the F-PSSH algorithm
outperforms IA-FSSH and standard F-FSSH.
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4.2, F-PSSH vs F-FSSH with Berry Force. So far, we have
demonstrated that F-PSSH results agree well with the exact
results, whereas the F-FSSH and IA-FSSH algorithms do not,
presumably because the latter two algorithms do not include
Berry force effects. To better probe the value of a phase-space
surface hopping code, in this subsection, we will present a
detailed comparison of the F-PSSH algorithm with the F-FSSH
with Berry force algorithm, in other words, we compare two
semiclassical algorithms that both do account for Berry force.

In most scenarios treated within Figure 2 and Figure 3 (and
in most other scenarios we tested), F-PSSH and F-FSSH with
h+k rescaling (and Berry force) yield equally accurate results.
However, for the two specific scenarios shown in Figure 4, the
F-FSSH with Berry force algorithm (red dashed line, labeled as
F-FSSH h+k rescaling) is able to give accurate predictions only
for high initial momentum (P, > 20 a.u.).*’ In the low initial
momentum regime, however, the F-FSSH with Berry force

init

algorithm allows for an erroneous P, during the simulation run,
and this error eventually leads to major deviations from the
exact results. While we are convinced that the F-PSSH
algorithm is likely the most accurate approach in general, F-
FSSH with Berry force may be a satisfactory ansatz in many
cases.

https://doi.org/10.1021/acs.jctc.2c00948
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5. CONCLUSIONS AND DISCUSSIONS

In summary, we have considered four different surface hopping
algorithms:

e instantaneously adiabatic (IA)-FSSH

e Floquet-FSSH

e Floquet-FSSH with ad hoc Berry forces
e Floquet-PSSH

We have benchmarked these algorithm as far as treating a
time-dependent and complex-valued Hamiltonian as relevant
to coupled nuclear-electronic problems in a circularly polarized
light field.

For our model problems, both IA-FSSH and the standard F-
FSSH algorithms completely fail to capture the resulting Berry
phase effects acting on the nuclear motion and transmission/
reflection probabilities which arise from the complex-valued
nature of the Hamiltonian. Between the remaining two
algorithms which do include Berry force (at least to some
extent), the algorithm with an ad hoc Berry force and rescaling
direction (h+k) can predict accurate results in the high
momentum regime; the Floquet phase-space surface hopping
algorithm can recover the exact results almost always both
qualitatively and quantitatively.

Interestingly, as a side note, the Hamiltonian in eqs 4, S, and
36 is spatially periodic in Y (with period 27, or angular
frequency Qy = 1). Thus, just as in Bloch theory, it would
appear natural to construct an electronic basis (with a phase
parametrized by the nuclear position in the Y-direction) of the
form

|EPW‘/‘> = EXP(iPQ-YY) exp(ima)Tt)W) 37)

where @7 is the temporal frequency of external periodic driving
and p is a Fourier index. Exploring such a basis (and relating
this basis back to the basis in eqs 13 and 26) might be very
revealing as far as simulating systems with both time and
spatial symmetry.**

Looking forward, we can find several paths for future
exploration with many open questions. A first question is, as
discussed in section 2, how to properly calculate final
electronic populations. Formally, when working within a
Floquet picture, one should account for nonzero interference
terms of the form:*”*’

Probi/nterference
NT N )
_ Z Zyzwl Zg:mli Cnrl/(cviw)* eXP(’(” - m)wt)
n#Em Nnt:/a] X N:rf;] (38)

Thus, in the context of F-PSSH, one may wonder if/how we
might be able to properly calculate the interference terms
between wavepackets with different momenta. This question
should be addressed in the future.

A second and equally important question relates to the
ubiquitous extra decoherence that must be included within all
surface hopping algorithms, i.e,, the need to account for wave
packet separation. Do existing decoherence ansatzes for FSSH

need to be modified when applied to PSSH approaches, and in
particular to E-PSSH?°°~** Our intuition is that, as in standard
FSSH, for F-PSSH the coherence of a trajectory moving along
one Floquet phase-space adiabat trajectory should also be
damped as wavepackets on different Floquet phase-space
adiabat separate after passing through the crossing region. But
for any Floquet based scheme, we have an interesting scenario
whereby we have two groups of parallel surfaces, with forces F,
and F), and we know that decoherence should be proportional
to Fy—F,. Thus, one might wonder: should there be a unique

decoherence rate for every pair of states, IE'%) and |§'b1) for all
possible a, b photon indices? Or should there be just one
effective decoherence rate for the system, capturing an effective
rate of wavepacket separation between all those wavepackets
on Floquet surfaces a0 and all those wavepackets on Floquet
surfaces b1? Detailed benchmarking needs to be done before
drawing any definitive conclusions.

Third, let us return to the original problem of a molecular
dynamics inside of a circularly polarized light field, with the
light-matter coupling of the form in eq 1. Now, this equation is
not equivalent to the form of eq S, but at bottom both of these
forms share the similar trait that they correspond to complex-
valued, time-independent Floquet Hamiltonians. We have
chosen to work with eq S in this paper (rather than eq 1)
mostly so that we could make direct contact with earlier papers
on spin-d)rnelmics,39_42 but we believe the lessons learned here
are general and future work will address Hamiltonians of the
form of eq 1 directly.

Fourth and finally, the exact functional form of phase factors
¢ can be obtained only by performing ab initio calculations. As
far as the implications of a circularly polarized light field and
the corresponding Berry forces are concerned, the most
essential question is how strong are the phase oscillation
(Vr@p) for realistic systems, and are these oscillations localized
or delocalized across configuration space? These questions
require further investigation as well.

In the end, although there are many questions left
unanswered, the possibility of using circularly polarized light
to push forward coupled nuclear-electronic dynamics is a
tantalizing prospect with a largely underexplored knob to
control the dynamics (the ellipticity of the light). We believe
the Floquet PSSH approach proposed here should offer an
essential tool going forward to begin such exploration.

B APPENDIX A

Diabatic Floquet Hamiltonian
In this appendix, for visual ease, we write out explicitly the
Floquet Hamiltonian in matrix form. Our basis {lmu)} is

{..; I(=1)0); I(=1)1); 100); 101); 110); 111); ...} (39)
Here again, m =0, +1, ... represents the Floquet photon

indices and p = 0, 1 represents the electronic state indices. The
explicit matrix form of eq 14 is (see also eq 4 and 5):

https://doi.org/10.1021/acs.jctc.2c00948
J. Chem. Theory Comput. 2023, 19, 718-732


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00948?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
HE — hao De' 0 Dye%/2 0 0
De™  HA - hw De®/2 0 0 0
i | 0 Dy /2 HE De' 0 D,e/2
T Dye /2 0 De ™ HY De/2 0
0 0 0 Dye /2 HE + hw De*
0 0 Dye /2 0 De H{ + ho
(40)

Note that we omit here all dependence on nuclear
configuration R.

B APPENDIX B

Constructing A Boosted Electronic Hamiltonian That Is as
Real as Possible for a Phase-Space Floquet Hamiltonian
Approach

In section 2.2.4, we argued that the appropriate gauge

transformation U must depend on the initial electronic

T Do)l
1/ (=)1)
|5({> :(i&l?o> _
€71 101)

|§,I0> 110)

Llf/il> L|11> ]

In order to reach a real-valued Hamiltonian, the relative phase
differences between the basis functions need to satisfy the
following overdetermined set of algebraic equations:

n
1 -1 1] b
1 -1 1, ¢
1 -1 a
U
1 -1 = |,
un
1 -1 ¢b
1 -1 "l
1 —1] »’767 ¢b
|9, (#2)

The first three rows arise from forcing the complex-valued
vibronic couplings to be real-valued, and the last four rows
arise from forcing the complex-valued light-matter couplings to
be real-valued. However, there is no solution to these algebraic
equations. For instance, if we sum over rows 1, 2, 4 and
compare the sum with row 5, we find
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state of a given problem. This scenario differs from original
PSSH algorithm in ref 42, where the initial state was irrelevant.
The difference arises now from the fact that for the Floquet
Hamiltonian as explicitly shown in eq 40, it is impossible to
define gauge transformations such that the entire Hamiltonian
becomes real-valued. To see this, let us attempt to make the 6
X 6 block in eq 40 real.
Let us denote the target 6 basis functions as

11(=1)o)]
I(=1)1)
100)
101)
110)

|11
1) | )

M=y iy =+ 0y, =y =0 =0, =24+,

(43)
n—1n=q, (44)
For ¢, # kr, k € Z, there is no solution to this set of algebraic
equations. Similarly, when we sum over rows 2, 3, 6 and
compare the sum with row 7, we obtain the same type of
contradiction. In the end, there simply is no gauge trans-
formation U under which the (infinite-dimensional) Floquet
Hamiltonian becomes real-valued.

With this constraint in mind, a practical approach forward is
to recognize that only a few Floquet states are actually
populated during a typical surface hopping calculation. After
all, for this same reason, the formally infinite dimensional
Floquet Hamiltonian can be safely truncated; for our
calculations in Figures 1—4, the corresponding Floquet
Hamiltonians are 18 X 18 matrices. Thus, it makes sense for
us to concern ourselves and make real-valued only those states
that directly couple to the initial Floquet state.

For the scenario that the initial state corresponds to 100), we

choose to make the couplings to 101) and 1=11) real. If we fix
13 = 0, the corresponding matrix of phases is
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diag(iIF)mmalstatez|50) = [.., e, ei{/}", 1, e_i{/f?, s, e ]
(45)
The choice of 7, 75, 74 is irrelevant to the results. Simply for
the sake of concreteness, we will choose the phase 7, for states
I(=1)0) so as to make the coupling ((—I)OI?CIFI(—T)I) real-
valued, we will choose the phase 75 for state |10) so as to make
the coupling ((N)ll‘f{FliO> real-valued, and we choose the phase

11 for state I11) so as to make the coupling ((N)Ol(/A‘IFIID to be
real-valued. The final result is

djag(rLIF)initialstate= 100)
= [, eid)ﬁidﬁ, ei{/"’, 1, e_i{/ﬁ; e_idl'_id)b; e_id)b; ] (46)

For the couplings between the rest of the states with larger
Floquet photon indices, we follow the same fashion such that
the closest complex-valued couplings to the initial state are
transformed to be real-valued.

Naturally, there is a different transformation if they are to
simulate dynamics with 101) as the initial state. Now, if we fix
1, = 0, we obtain

dlag(q/IP)initialstate:|61>
= [..., e, €™, e"ﬁl, 1, e_"ﬁb, e, ]

=[., ei(/}”, ei(/’ﬂ+i¢”, ei(/}ﬂ, 1, e_i‘ﬁb, e_i‘ﬁb_i‘/}ﬂ, o] (47)

As one would expect, the final results do not depend on 7, 77,,

M-

The matrices Dy, for these two scenarios are obviously:

diag(DF)im’tiaIstate= 100)

= [ —W,

= w,; —wy; 0; w; w, + wy; wi; L] (48)
diag(DF)initialstate=|61)

= [ — Wy —W, — Wy;

-w; 05 wy; W, + wy; ] (49)

Under these gauge transformations, we obtain two diabatic

Floquet Hamiltonians respectively:

HY — ho D, 0 D20 0
D, Hff — hw D,/2 0 0 0
) 0 D,/2  Hy D 0 Dy/2
(WF)initialstate=|(~JO) = 2ig 1
D,e/2 0 D, H D,/2 0
0 0 0 DJ2  Hyp+ho De
0 0 D,/2 0 De  Hj + ho
(50)
HY — hw D 0 D,/2 0 0
De  Hfj-hw D/2 0 0 0
A 0 Dy/2  Hy D0 Dye™ /2
((]-{F)initialstate=|6l) = 1
D,/2 0 D, Hj, Dy/2 0
0 0 0 Dy/2 Hy + ho D,
0 0 Dye*/2 0 D, HY} + ho
(s1)

Note that there is a real-valued 3 X 3 matrix block inside of
each Floquet Hamiltonian.

Lastly, by following eq 30, if the initial state is 100), the final
diabatic phase-space Floquet Hamiltonian is
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HY — hw D, 0  De /2 0 0
D, HY — o D,/2 0 0 0
. 0 D,/2 HY D, 0 D,/2
['7‘{1:] (Rf P) = y .
D,e®/2 0 D H! D,/2 0
0 0 0 D2 H + Ao D
0 0 D,/2 0 De ¥ HY + ho
hl + 2
mtw) o 5o o 0
2m
flzwz
0 00 0 0
2m
0 0 00 0 0
— h2w2
0 0 0 20 0
2m
hl + 2
0 o 00 (et w)
2m
wwi
0 0 00 0
2m
ihP-(w, +
IR+ w) o gy 0 0
m
ihP-w,
0 — 0 0 0 0
m
0 0 00 0 0
+ ihP-w,
0 0 0 - 0 0
m
ihP-(w, + w,
0 0 00 _M 0
m
ihP-w,
0 0 00 0 -
m
(52)
If the initial state is I01), then the final diabatic phase-space
Floquet Hamiltonian is
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. H) —how D 0 D,/2 0 0
. De ¥  HY-hw DJ2 0 0 0
. w0 D,/2 H D 0 Dye 2/ .
[HF] (Rf P) = .
. D2 0 D, HY D,/2 0
.0 0 0 D,/2 H&+ ho D,
.0 0 De*/2 0 D, H + ho ..
flzwg
—t 9 0 00 0
2m
hl + 2
o Hlwtw) o o0
2m
nw>
.0 0 20 0 0
- 2m
.0 0 0 0 0
nw?
.0 0 0 0 Lo
2m
n(w +w,)*
.0 0 0 00 (w, + w,) .
2m
ihP-w,
— 0 00 0
m
inP-(w, +
o P (w, + w) 0 0 0
m
ihP-w,
.0 0 — 200 0
+ m
.0 0 0 00 0
ihP-w,
.0 0 0 -
m
o 0 0 0 0 _ihP-(w, +w)
m
(83)
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