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ABSTRACT
We show that standard Ehrenfest dynamics does not conserve linear and angular momentum when using a basis of truncated adiabatic
states. However, we also show that previously proposed effective Ehrenfest equations of motion [M. Amano and K. Takatsuka, “Quantum
fluctuation of electronic wave-packet dynamics coupled with classical nuclear motions,” J. Chem. Phys. 122, 084113 (2005) and V. Krishna,
“Path integral formulation for quantum nonadiabatic dynamics and the mixed quantum classical limit,” J. Chem. Phys. 126, 134107 (2007)]
involving the non-Abelian Berry force do maintain momentum conservation. As a numerical example, we investigate the Kramers doublet
of the methoxy radical using generalized Hartree–Fock with spin–orbit coupling and confirm that angular momentum is conserved with the
proper equations of motion. Our work makes clear some of the limitations of the Born–Oppenheimer approximation when using ab initio
electronic structure theory to treat systems with unpaired electronic spin degrees of freedom, and we demonstrate that Ehrenfest dynamics
can offer much improved, qualitatively correct results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0177778

I. INTRODUCTION

Given the speed and power of modern computational super-
computers, nonadiabatic dynamics is widely used at present to
study ultrafast photochemical and charge-transfer dynamics (as
probed by state-of-the-art experiments).3 When connecting with
experiments, however, in practice, nonadiabatic simulations must
almost always make a quantum–classical approximation4–9 in order
to be computationally feasible. The fundamental assumption of
propagating nuclei classically and the electrons quantum mechan-
ically inevitably raises the issue of how to correctly incorporate
the feedback between the quantum and the classical subsystems.
One of the most popular choices at present is the surface hop-
ping approach,10–13 whereby a swarm of trajectories move along
a single adiabatic surface and stochastically hop between surfaces

to account for nonadiabatic effects. As we have recently docu-
mented,14 the surface-hopping algorithm faces difficulties in the
presence of spin–orbit coupling (SOC), which we will address in
a separate paper. A second approach, orthogonal to the surface-
hopping ansatz, is to include the interaction between the quantum
and classical subsystems in a mean-field way, which gives rise to
the standard Ehrenfest approach15–18—an approach that is always
well-defined (with or without SOC).

The pros and cons of Ehrenfest dynamics are well-known
within the community.19–26 Ehrenfest is most advantageous if there
are frequent transitions between nearly parallel states, and one can
work with either a handful or a dense manifold27 of such states.
However, the mean-field approximation between the quantum and
classical subsystems can break down when there is a strong coupling
between the two subsystems (e.g., when two potential energy sur-
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faces are much displaced from each other); in such a case, methods
such as multi-configurational Ehrenfest have been developed.28,29

Standard Ehrenfest also cannot account for decoherence nor achieve
a detailed balance,21,22 which are important when studying systems
in the condensed phase; various correction schemes have been pro-
posed to address these deficiencies as well.24–26,30–32 As a side note,
we mention that, in this paper, we will concern ourselves strictly with
what is known as “linear-response” Ehrenfest, where the electronic
wavefunction is expanded in a basis of adiabatic/diabatic states; we
will not concern ourselves with real-time Ehrenfest dynamics,18,33

whereby the electronic wavefunction is propagated directly in the
original atomic orbital basis.

As a practical matter, there are several means by which one
can judge the value of any dynamical approach. Almost always,
the very first constraint on any good dynamics algorithm is energy
conservation; in fact, checking for energy conservation is usu-
ally the very first means of making sure one’s code is free of
bugs.34 Beyond energy conservation, in the absence of an exter-
nal torque on the system, a second constraint is that the total
angular momentum is also conserved. Interestingly, as opposed
to energy conservation, angular momentum conservation is rarely
emphasized in the context of nonadiabatic dynamics (though see
below). Consider the most standard class of molecular dynamics,
namely single-state dynamics within the Born–Oppenheimer (BO)
approximation. For such dynamics, the electronic linear and angu-
lar momentum are usually neglected (or more formally folded into
the nuclear degrees of freedom),35 and the nuclear linear and angu-
lar momentum are conserved due to translational symmetry and
isotropy of space. However, as we have recently shown,36 if one
runs BO dynamics (without Berry force) along one of the degen-
erate doublet surfaces (in the presence of spin–orbit coupling)
and keeps track of the fluctuating electronic angular momentum,
one will inevitably compute a total angular momentum that fluc-
tuates (i.e., one will predict a violation of angular momentum
conservation).

Now, one means to resolve this paradox is not to use BO theory
at all, but rather exact factorization,37–39 where angular momentum
exchange has recently been explored.40 As pointed out in Ref. 36,
however, an even simpler resolution to this paradox is that, within
BO theory, one must include a Berry force (see below) acting on the
nuclear motion. More precisely, for nonadiabatic systems with odd
numbers of electrons plus SOC, the on-diagonal derivative coupling
d is not zero, so the nuclear kinetic momentum πn is not equiva-
lent to the canonical momentum Pn (recall that πn = Pn − ihd). In
order to minimize gauge problems, the usual approach is then to
pick one adiabat from the Kramers pair to run along (say, j, which is
computed from some approximate electronic structure techniques)
and then to propagate the nuclear kinetic momentum πn; the latter
step inevitably introduces the Abelian Berry force in the equation
of motion for πn, FBerry

j = ih̵(∇n × d j j) ⋅
πn
M . As shown in Ref. 36,

including the pseudo-magnetic Berry force allows for a full exchange
of angular momentum between electronic, nuclear, and spin degrees
of freedom. Of course, there is still no guarantee that the dynam-
ics are correct (i.e., following one adiabat of a pair), but at least
the resulting dynamics are guaranteed to conserve the total angular
momentum.

The above background raises crucial questions for the field
of nonadiabatic dynamics. If one needs to go beyond BO dynam-
ics, one can ask: do nonadiabatic dynamics algorithms conserve the
total (electronic plus nuclear) momentum? In a recent paper, Shu
et al.41 showed that the nuclear angular momentum is not conserved
within an ab initio Ehrenfest scheme propagated in an adiabatic
basis. In Ref. 41, the authors addressed this issue by projecting out
the translational and rotational components of the derivative cou-
pling that enters the force; see Eq. (18). While this scheme offers a
practical way to conserve nuclear angular momentum, we will show
below that the problems arising in Ref. 41 are at bottom created by
using a truncated adiabatic basis, for which there is a rigorous (not
ad hoc) solution. Deriving and understanding such a solution is the
main focus of the present paper, but in a nutshell, if BO dynamics
require the Abelian Berry curvature in order to maintain momen-
tum conservation, nonadiabatic Ehrenfest dynamics in a truncated
basis require the non-Abelian Berry curvature42 in order to achieve
the same feat.

Finally, before concluding this section, a few words are appro-
priate regarding spin. The most obvious cases where we expect
angular momentum conservation to be interesting are systems with
a flow of angular momentum between different degrees of free-
dom (including nuclear, electronic, and spin degrees of freedom).
For organic systems, the spin degree of freedom often operates on
a much longer time scale than the electronic degree of freedom
and sometimes even longer than the nuclear motion. In such cases,
the validity of the BO approximation is dubious. Indeed, in this
paper, we will show that a simple rotation of the methoxy radical
breaks the BO approximation because, within the BO approxi-
mation, the total spin vector rotates with the molecule instanta-
neously (which is incorrect). One would hope that the Ehrenfest
equations of motion would perform far better, and, indeed, Ehren-
fest does (correctly) slow down the spin change with the nuclear
motion.

This paper is organized as follows. In Sec. II, we begin by
demonstrating momentum conservation for Ehrenfest dynamics
propagated over a complete electronic Hilbert space; this conclu-
sion holds whether one performs the dynamics in a diabatic or
adiabatic basis, and by comparing the calculations in two different
basis sets, one inevitably learns about the non-Abelian Berry curva-
ture. In Sec. III, we then remove the assumption of a complete set
of states and show that, according to standard Ehrenfest dynamics,
neither linear nor angular momentum is conserved in a truncated
set of states. To restore momentum conservation in the presence
of a truncated basis, we show that the equations of motion must
include the non-Abelian Berry curvature and we present the rele-
vant Hamiltonian from which Hamilton’s equations can be derived
(where the final form agrees with the derivations in Refs. 1 and 2).
In Sec. VI, in order to demonstrate the importance of momentum
conservation, we perform two ab initio Ehrenfest calculations of the
methoxy radical in the Kramers pair basis. We study both excitation
of a vibration and excitation of angular momentum. These two cases
make clear that including the non-Abelian Berry curvature can have
a strong impact on the resulting spin dynamics and that, more gen-
erally, the BO approximation can badly break down in the presence
of unpaired electrons. In Sec. VIII, we conclude and discuss future
possible ab initio directions.
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II. THEORY: DYNAMICS WITHIN A COMPLETE
(UNTRUNCATED) ELECTRONIC HILBERT SPACE

We begin our analysis by assuming that we are working in a
complete (untruncated) electronic vector space with zero curvature.
This scenario represents a very ideal condition because the electronic
Hilbert space is immense—requiring an enormous number (infinite)
of one-particle electronic basis functions and then an even larger
number (infinite) of many-body electronic wavefunctions (and just
about any finite basis will exhibit a nonzero Berry curvature42). Nev-
ertheless, the analysis below will still be useful insofar as teaching us
how to understand how the Ehrenfest equations can take different
forms in different representations.

A. A strictly diabatic representation
To begin our discussion, let us imagine that we are given an

electronic Hamiltonian expressed in a strictly diabatic basis; in other
words, the electronic basis does not depend at all on nuclear posi-
tion. The Hamiltonian (H̃) and the energy (Ẽ) are postulated to be
of the form

H̃ =∑
I

PI2

n

2MI
+ Ṽ , (1)

Ẽ =∑
I

PI2

n

2MI
+ Tr(σ̃Ṽ), (2)

where we denote the classical nuclear position Rn and nuclear
momentum Pn. Here and below, we use the indices IJ for nuclei
and αβγ for the Cartesian indices xyz. The potential operator
Ṽ = T̃e + Ṽee + Ṽen + Ṽnn includes the electronic kinetic energy,
electron–electron interaction, electron–nuclear Coulomb interac-
tion, and nuclear–nuclear repulsion terms, respectively. We use the
notation “∼” to indicate operators in a diabatic basis. For the energy
expression, the first term is the nuclear kinetic energy and the second
term is the potential energy term that one computes by integrat-
ing over the electronic degree of freedom with the electronic density
operator σ̃ in a diabatic basis.

According to Hamilton’s equations, the equations of motions
for nuclear position and momentum are

ṘIα
n =

∂Ẽ
∂PIα

n
=

PIα
n

MI
, (3)

ṖIα
n = −

∂Ẽ
∂RIα

n
= −Tr(σ̃

∂Ṽ
∂RIα

n
). (4)

The associated density matrix operator evolves according to the
quantum Liouville equation,

˙̃σ = −
i
h̵
[Ṽ , σ̃]. (5)

Using Eqs. (3) and (4), it is straightforward to show that the total
energy in the diabatic representation [Eq. (2)] is conserved dẼ

dt = 0.
At this point, it will be helpful to define the nuclear angular

momentum,

Jαn ≡∑
Iβγ

εαβγR
Iβ
n MIṘ

Iγ
n , (6)

where εαβγ is the Levi–Civita symbol. Using Eq. (3), it follows that we
can also write

Jαn =∑
Iβγ

εαβγR
Iβ
n PIγ

n , (7)

J̇αn =∑
Iβγ

εαβγR
Iβ
n ṖIγ

n . (8)

Using Eqs. (4) and (5), we can now evaluate the time derivative of
the total linear and angular momentum,

Ṗαtot = Ṗαn + Tr( ˙̃σP̃α
e)

= −∑
I

Tr(σ̃
∂Ṽ
∂RIα

n
) −

i
h̵

Tr(σ̃[P̃α
e , Ṽ]), (9)

J̇αtot = J̇αn + Tr( ˙̃σJ̃αe)

=∑
Iβγ

εαβγR
Iβ
n ṖIγ

n −
i
h̵

Tr(σ̃[J̃αe , Ṽ]). (10)

Finally, because we have assumed a complete electronic Hilbert
space, for a finite system in real space, the translational symmetry
and the isotropy of space imply the following identities:

[P̃n + P̃e, Ṽ] = 0, (11)

[J̃n + J̃e, Ṽ] = 0. (12)

These equations lead to the following further identities:

−
i
h̵
[P̃α

e , Ṽ] =
i
h̵
[P̃αn, Ṽ] =

∂Ṽ
∂Rα

n
, (13)

−
i
h̵
[J̃αe , Ṽ] =

i
h̵
[J̃αn, Ṽ] =∑

Iβγ
εαβγR

Iβ
n

∂Ṽ
∂RIγ

n
. (14)

If we plug the above commutators into Eqs. (9) and (10), we find
momentum conservation Ṗαtot = J̇αtot = 0.

B. Adiabatic representation
The above-mentioned equations of motion for Ehrenfest

dynamics can be transformed into an adiabatic basis as well with
the same conclusions, though we will find that the existence of
a complete electronic basis is expressed differently than what we
found in Eqs. (11) and (12). To proceed, let us define a unitary
matrix that transforms the diabatic basis (with indices abcd) to
adiabatic basis (with indices ijkl): ∣ψk⟩ = ∑a ∣ϕa⟩Uak. The density
and potential operators in the adiabatic basis obtained after the
diabatic-to-adiabatic transformation are

σ̂ = U†σ̃U , (15)

V̂ = U†ṼU. (16)
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To transform the equations of motions in the diabatic basis
[Eqs. (3)–(5)] to the adiabatic basis, let us write the equations of
motion in terms of σ̂ and V̂ . Specifically,

ṘIα
n =

PIα
n

MI
, (17)

ṖIα
n = −Tr(U†σ̃UU† ∂Ṽ

∂RIα
n

U)

= −Tr(σ̂
∂V̂
∂RIα

n
) +

i
h̵

Tr(σ̂[AIα, V̂]), (18)

˙̂σ =
d
dt
(U†σ̃U) = −

i
h̵
[V̂ −∑

I

PI
n ⋅ AI

MI
, σ̂]. (19)

Here, we have defined

AIα
jk = ih̵∑

a
U†

ja
∂Uak

∂RIα
n
= ih̵⟨ψj ∣

∂ψk

∂RIα
n
⟩, (20)

which is commonly known as the nonadiabatic coupling term or the
Berry connection. It is also the negative of the nuclear momentum
operator,

AIα
jk = −⟨ψj ∣P̂Iα

n ∣ψk⟩. (21)

Equations (17)–(19) are often considered the standard Ehrenfest
equations of motion in an adiabatic basis.7,43

To demonstrate momentum conservation within this adiabatic
representation, we again evaluate the time derivative of the total
linear and angular momentum,

Ṗαtot =∑
I

ṖIα
n + Tr(σ̂Ṗα

e + ˙̂σPα
e), (22)

J̇αtot =∑
I

J̇Iα
n + Tr(σ̂J̇αe + ˙̂σJαe). (23)

Note that when propagating the equations of motion in the adiabatic
basis, one can choose an arbitrary phase of the adiabatic state as long
as it is smooth in the configuration space. For instance, let us assume
that, in the vicinity of configuration R0, the electronic state is chosen
as

ψk(r; Rn) = ϕk(r − Rn)e
i
h̵ ζk(Rn−R0). (24)

In such a case, one finds the following relations:

(∑
I

P̂Iα
n + P̂αe)∣ψk⟩ =∑

I
ξIα

k (Rn)∣ψk⟩, (25)

(∑
I

ĴIα
n + Ĵαe)∣ψk⟩ =∑

Iηγ
εαηγRIη

n ξ
Iγ
k (Rn)∣ψk⟩, (26)

where ξIα
k (Rn) = ∇Iαζk(Rn).

Thereafter, one can arrive at the following identities for the
matrix elements of electronic momentum and angular momentum
operators:

⟨ψj ∣P̂αe ∣ψk⟩ = −∑
I
⟨ψj ∣P̂Iα

n ∣ψk⟩ +∑
I
ξIα

k δjk

=∑
I

AIα
jk + ξ

Iα
k δjk, (27)

⟨ψj ∣Ĵαe ∣ψk⟩ = −∑
I
⟨ψj ∣ĴIα

n ∣ψk⟩ +∑
Iηγ

εαηγRIη
n ξ

Iγ
k δjk

=∑
Iηγ

εαηγRIη
n (A

Iγ
jk + ξ

Iγ
k δjk). (28)

If we differentiate the above-mentioned matrix elements with
respect to time, we find

Ṗαe, jk =∑
I

ȦIα
jk + ξ̇

Iα
k δjk

=∑
IJβ

ṘJβ
n
⎛

⎝

∂AIα
jk

∂RJβ
n
+ ξJβ,Iα

k δjk
⎞

⎠
, (29)

J̇αe, jk =∑
Iηγ

εαηγṘIη
n (A

Iγ
jk + ξ

Iγ
k δjk)

+ ∑
IJηγβ

εαηγRIη
n ṘJβ

n
⎛

⎝

∂AIγ
jk

∂RJβ
n
+ ξJβ,Iγ

k δjk
⎞

⎠
. (30)

Here, we introduce the notation ξJβ,Iα
k (Rn) = ∇JβξIα

k (Rn).

1. Linear momentum conservation
To demonstrate the conservation of linear momentum, let us

now evaluate all terms in Eq. (22).

● From Eq. (18), the first term in Eq. (22) (∑I ṖIα
n ) is

∑
I

ṖIα
n =∑

I
− Tr(σ̂

∂V̂
∂RIα

n
) +

i
h̵

Tr(σ̂[AIα, V̂])

=
i
h̵∑I

Tr([V̂ , σ̂]AIα
), (31)

where the first term vanishes since we assume a translation-
ally invariant potential energy surface.

● From Eq. (29), the second term in Eq. (22) [Tr(σ̂Ṗα
e)] is

Tr(σ̂Ṗα
e) =∑

IJβjk
σ̂kjṘ

Jβ
n
⎛

⎝

∂AIα
jk

∂RJβ
n
+ ξJβ,Iα

k δjk
⎞

⎠
. (32)

● Using Eq. (27) to express Pα
e in terms of AIα, the last term

[Tr( ˙̂σPα
e)] in Eq. (22) becomes

Tr( ˙̂σPα
e) =∑

Ijk

˙̂σkj(A
Iα
jk + ξ

Iα
k δjk). (33)
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If we plug Eq. (19) into Eq. (33), the second term in Eq. (33)
becomes

∑
Ijk

˙̂σkjξ
Iα
k δjk = −

i
h̵∑Ijk

ξIα
k (V̂kkσ̂kj − σ̂kjV̂ jj)δjk

+
i
h̵∑IJβjk

ṘJβ
n σ̂kj(ξ

Iα
j − ξ

Iα
k )A

Jβ
jk (34)

= −
i
h̵∑IJβjk

ṘJβ
n σ̂kj(ξ

Iα
k − ξ

Iα
j )A

Jβ
jk. (35)

If we plug Eqs. (19) and (35) into Eq. (33), we can then
simplify the total expression in Eq. (33),

Tr( ˙̂σPα
e) = −

i
h̵∑I

Tr([V̂ , σ̂]AIα
)

+
i
h̵

Tr
⎛

⎝
σ̂∑

IJβ
ṘJβ

n [A
Iα, AJβ

]
⎞

⎠

−
i
h̵∑IJβjk

ṘJβ
n σ̂kj(ξ

Iα
k − ξ

Iα
j )A

Jβ
jk. (36)

Using Eqs. (31), (32), and (36), we can finally evaluate the time
dependence of the total linear momentum in Eq. (22). We notice that
Eq. (31) cancels with the first term in Eq. (36), and we are left with

Ṗαtot =∑
IJβ

Tr(σ̂ṘJβ
n (

∂AIα

∂RJβ
n
+

i
h̵
[AIα, AJβ

]))

+∑
IJβjk

σ̂kjṘ
Jβ
n [ξ

Jβ,Iα
k δjk −

i
h̵
(ξIα

k − ξ
Iα
j )A

Jβ
jk] (37)

=∑
IJβ

Tr(σ̂ṘJβ
n (−

∂AJβ

∂RIα
n
+
∂AIα

∂RJβ
n
+

i
h̵
[AIα, AJβ

])) (38)

= −∑
IJβ

Tr(σ̂ṘJβ
n Ω

IαJβ
). (39)

Note that to go from Eq. (37) to Eq. (38), we used the following
relation, which is proven in Sec. S1 of the supplementary material:

∑
I

∂AJβ
jk

∂RIα
n
= −∑

I
ξJβ,Iα

k δjk +
i
h̵∑I

(ξIα
k − ξ

Iα
j )A

Jβ
jk. (40)

The above-mentioned analysis leads us to consider the famous
non-Abelian Berry curvature ΩIαJβ,42,44 which is defined as

ΩIαJβ
=
∂AJβ

∂RIα
n
−
∂AIα

∂RJβ
n
−

i
h̵
[AIα, AJβ

]. (41)

As is well-known, the non-Abelian Berry curvature vanishes in the
limit of a complete basis, as one can readily demonstrate by inserting
a resolution of identity,∑l ∣ψl⟩⟨ψl∣,

∂AJβ
jk

∂RIα
n
−
∂AIα

jk

∂RJβ
n
=

i
h̵∑l

(AIα
jl AJβ

lk − AJβ
jl AIα

lk ). (42)

To repeat, the total linear momentum is conserved when we per-
form the calculation with a complete electronic basis, and in an
adiabatic representation, this conservation becomes clear because
the non-Abelian Berry curvature vanishes.

2. Angular momentum conservation
Next, let us demonstrate the same conclusion for angu-

lar momentum conservation. We must evaluate all the terms in
Eq. (23).

● From the expression for J̇αn in Eq. (8) and the expression for
ṖIγ

n in Eq. (18), we can write out the first term in Eq. (23),

∑
I

J̇Iα
n =∑

Iβγ
εαβγR

Iβ
n Tr(σ̂(−

∂V̂
∂RIγ

n
+

i
h̵
[AIγ, V̂]))

=
i
h̵∑Iβγ

εαβγR
Iβ
n Tr([V̂ , σ̂]AIγ

). (43)

In the above-mentioned equation, the first term vanishes
because we assume that space is isotropic.

● To write down the expression for the second term Tr(σ̂J̇αe)
in Eq. (23), let us simplify the expression for J̇αe in Eq. (30).
Specifically, we will use the following relation, which is
proved in Sec. S1 of the supplementary material:

∑
γ
εαηγ(AIγ

jk + ξ
Iγ
k δjk)

=∑
Jβγ

εαβγR
Jβ
n

⎡
⎢
⎢
⎢
⎢
⎣

−
∂AIη

jk

∂RJγ
n
+

i
h̵
(ξJγ

k − ξ
Jγ
j )A

Iη
jk − δjkξ

Iη,Jγ
k

⎤
⎥
⎥
⎥
⎥
⎦

. (44)

If we substitute Eq. (44) into Eq. (30) and change dummy
index labels, we recover

Tr(σ̂J̇αe) = ∑
IJηβγjk

σ̂kjεαηγR
Iη
n ṘJβ

n

⎡
⎢
⎢
⎢
⎢
⎣

∂AIγ
jk

∂RJβ
n

−
∂AJβ

jk

∂RIγ
n
+

i
h̵
(ξIγ

k − ξ
Iγ
j )A

Jβ
jk

⎤
⎥
⎥
⎥
⎥
⎦

. (45)

● Using Eq. (28), the last term Tr( ˙̂σJαe) in Eq. (23) becomes

Tr( ˙̂σJαe) = ∑
Iηγjk

εαηγRIη
n ˙̂σkj(A

Iγ
jk + ξ

Iγ
k δjk). (46)
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We begin by evaluating and plugging Eq. (35) into the
second term of Eq. (46),

∑
Iηγjk

εαηγRIη
n ˙̂σkjξ

Iγ
k δjk = −

i
h̵ ∑IJjkβγη

εαηγRIη
n ṘJβ

n

× σ̂kj(ξ
Iγ
k − ξ

Iγ
j )A

Jβ
jk. (47)

If we then plug Eqs. (19) and (47) into Eq. (46) and simplify,
we find

Tr( ˙̂σJαe) = ∑
IJηγβ

εαηγRIη
n (−

i
h̵

Tr([V̂ , σ̂]AIγ
)

+
i
h̵

ṘJβ
n Tr(σ̂[AIγ, AJβ

])

−
i
h̵

ṘJβ
n σ̂kj(ξ

Iγ
k − ξ

Iγ
j )A

Jβ
jk). (48)

From Eqs. (43), (45), and (48), we can evaluate the time deriva-
tive of angular momentum in Eq. (23). Specifically, we see that
Eq. (43) cancels with the first term in Eq. (48) and the phase-
dependent terms (depending on ξ) in Eqs. (45) and (48) cancel as
well. The remaining terms are

J̇αtot = ∑
IJηγβ

εαηγ Tr(σ̂RIη
n ṘJβ

n (
∂AIγ

∂RJβ
n
−
∂AJβ

∂RIγ
n
+

i
h̵
[AIγ, AJβ

]))

= −∑
IJηγβ

εαηγ Tr(σ̂RIη
n ṘJβ

n Ω
IγJβ
). (49)

As above, the non-Abelian Berry curvature appears, and in
this case, the conservation of angular momentum is implied by the
fact that the non-Abelian Berry curvature vanishes in the limit of a
complete set of adiabatic states.

C. Independence of choice of gauge
Before concluding this section, it is crucial to emphasize that

the above results do not depend in any way on the gauge ξ in
Eqs. (25) and (26). To the seasoned practitioner of Ehrenfest (or
Ehrenfest based) dynamics,45 this may not be surprising because
Eqs. (17)–(19) hold in any basis whatsoever. At the risk of redun-
dancy, for the sake of completeness, let us show this result explicitly
by imagining that we rotate our old set of basis states to a new set
of basis states with a unitary matrix ∣ψj⟩ = ∑k ∣ψk⟩Ukj. In the new
basis, the density matrix, the electronic Hamiltonian, and the Berry
connection take the following forms:

σ = U †σ̂U , (50)

V = U †V̂U , (51)

A = U †AU + ih̵U †
∇nU. (52)

Using Eqs. (50)–(52) in Eq. (18), we can readily show that the
equation of motion for the nuclear momentum is unchanged,

ṖIα
n = −Tr(U †σ̂U

∂V̂
∂RIα

n
U) +

i
h̵

Tr(σ[U †AIαU , V]) (53)

= −Tr(σ
∂V
∂RIα

n
) +

i
h̵

Tr(σ[A Iα, V]). (54)

Here, we used the following relationship:

∇nV = U †
∇nV̂U − [U †

∇nU , V]. (55)

Next, we can show that the equation of motion for the elec-
tronic density matrix propagation is also independent of basis. By
definition,

σ̇ = U † ˙̂σU + Ṙn(∇nU †σ̂U +U †σ̂∇nU) (56)

= U † ˙̂σU − [∑
I

PI
n

MI
⋅U †
∇IU , σ]. (57)

Now, using Eqs. (50)–(52) together with Eq. (19), it follows that

U † ˙̂σU = −
i
h̵
[V −∑

I

PI
n

MI
⋅U †AIU , σ] (58)

= −
i
h̵
[V −∑

I

PI
n

MI
⋅ A I , σ] + [∑

I

PI
n

MI
⋅U †
∇IU , σ]. (59)

Thus, if we plug Eq. (59) into Eq. (57), we find the desired result,

σ̇ = −
i
h̵
[V −∑

I

PI
n

MI
⋅ A I , σ]. (60)

III. A REALISTIC WINDOW WITH A TRUNCATED
NUMBER OF ADIABATIC BASIS FUNCTIONS

In Sec. II, we showed that both linear momentum and angu-
lar momentum are conserved for the Ehrenfest equations of motion
[Eqs. (3)–(5)] postulated in a complete electronic Hilbert space. In
practice, however, a strictly diabatic basis46–48 and a complete set
of adiabatic states are generally not available; one almost always
works in a truncated basis of adiabatic electronic states. In such a
case, when studying chemical systems using the above formalism,
one might suppose that the linear and angular momentum will not
be conserved according to Eqs. (39) and (49), and thus, one might
inevitably question the accuracy of such dynamics.

Now, in order to conserve momentum, it is fairly straightfor-
ward to guess a solution. Namely, the culprit that has appeared above
is the non-Abelian Berry curvature, and given Eq. (39), it is fairly
straightforward to guess that we ought to damp the nuclear equation
of motion by the non-Abelian Berry curvature,

R̈α
n → R̈α

n +∑
IJβ

Tr(σ̂ṘJβ
n Ω

IαJβ
), (61)

or some variation thereof. Indeed, such equations have been derived
by a Lagrangian formulation1 and a path integral formulation.2 The
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interested reader can find a proper derivation therein, but for our
purposes, the correct Ehrenfest equations of motion can be heuristi-
cally derived from the following effective (non-linear) Hamiltonian
Ĥ in the adiabatic representation:

Ĥ =∑
I

PI
n

2

2MI
−∑

I

PI
n ⋅ AI

MI
+∑

I
Tr(σ̂AI

) ⋅
AI

MI

−∑
I

1
2MI
[Tr(σ̂AI

)]
2
+ V̂. (62)

The corresponding expectation value of the energy E is

E =∑
I

PI
n

2

2MI
+ Tr[σ̂(V̂ −∑

I

PI
n ⋅ AI

MI
)] +∑

I

1
2MI
[Tr(σ̂AI

)]
2.

(63)

The equations of motion for (Rn, Pn) are

˙̂σ = −
i
h̵
[V̂ −∑

I

PI
n ⋅ AI

MI
+∑

I
Tr(σ̂AI

) ⋅
AI

MI
, σ̂], (64)

ṘIα
n =

∂E
∂PIα

n
=

PIα
n

MI
− Tr(σ̂

AIα

MI
), (65)

ṖIα
n = −

∂E
∂RIα

n

= −Tr
⎛

⎝
σ̂
⎛

⎝

∂V̂
∂RIα

n
−∑

Jβ

[PJβ
n − Tr(σ̂AJβ

)]

MJ

∂AJβ

∂RIα
n

⎞

⎠

⎞

⎠
. (66)

According to Eq. (65), we find a difference between the kinetic
and canonical momentum. If we now change variables from the
canonical to the kinetic momentum,49

πIα
n = PIα

n − Tr(σ̂AIα
), (67)

we can rewrite the equations of motion in terms of (Rn,πn),

˙̂σ =
−i
h̵
[V̂ −∑

Iα

πIα
n

MI
⋅ AIα, σ̂], (68)

ṘIα
n =

πIα
n

MI
, (69)

π̇Iα
n = ṖIα

n − Tr(σ̂Ȧ Iα
) − Tr( ˙̂σAIα

) (70)

= −Tr(σ̂
∂V̂
∂RIα

n
) +∑

Jβ

πJβ
n

MJ
Tr(σ̂ΩIαJβ

)

+
i
h̵

Tr([V̂ , σ̂]AIα
). (71)

These are the equations of motion derived properly in Refs. 1
and 2. Compared to the standard adiabatic Ehrenfest equations in
Eqs. (17)–(19), the equation of motion for the kinetic momentum
πIα

n takes on an additional term that depends on the non-Abelian
Berry curvature [in analogy to what was guessed in Eq. (61)]. Of

course, in the limit of a complete set of states, the non-Abelian
Berry curvature goes to zero and Eqs. (68)–(71) reduce to the stan-
dard adiabatic Ehrenfest equations in Eqs. (17)–(19). For the sake
of completeness (and at the slight risk of redundancy), let us now
demonstrate that Eqs. (68)–(71) formally obey linear and angular
momentum conservation.

A. Linear momentum conservation
We first examine the linear momentum conservation. Based on

the expression for π̇Iα
n in Eq. (70),

Ṗαtot =∑
I
π̇Iα

n + Tr( ˙̂σPα
e) + Tr(σ̂Ṗα

e) (72)

=∑
I

ṖIα
n + Tr[ ˙̂σ(Pα

e −∑
I

AIα
)]

+ Tr[σ̂(Ṗα
e −∑

I
Ȧ Iα
)]. (73)

Now, evaluate each term in Eq. (73).

● From Eq. (66), the first term in Eq. (73) is

∑
I

ṖIα
n = −∑

I
Tr(σ̂

∂V̂
∂RIα

n
) +∑

IJβ

πJβ
n

MJ
Tr(σ̂

∂AJβ

∂RIα
n
)

=∑
IJβ

ṘJβ
n Tr(σ̂

∂AJβ

∂RIα
n
) (74)

for a translationally invariant potential energy surface.
● Rearranging Eq. (27) and using Eq. (35), the second term in

Eq. (73) is

Tr[ ˙̂σ(Pα
e −∑

I
AIα
)] =∑

Ijk

˙̂σkjξ
Iα
k δjk

= −
i
h̵∑IJβjk

σ̂kjṘ
Jβ
n (ξ

Iα
k − ξ

Iα
j )A

Jβ
jk. (75)

● Rearranging Eq. (29), the third term in Eq. (73) is

Tr[σ̂(Ṗα
e −∑

I
Ȧ Iα
)] =∑

Ijk
σ̂kj ξ̇

Iα
k δjk

=∑
IJβjk

σ̂kjṘ
Jβ
n ξ

Jβ,Iα
k δjk.

(76)

If we add Eqs. (74)–(76) together, the time dependence of
the total linear momentum in Eq. (73) becomes

Ṗαtot =∑
IJβ

ṘJβ
n Tr(σ̂

∂AJβ

∂RIα
n
) +∑

IJβjk
σ̂kjṘ

Jβ
n

× (ξJβ,Iα
k δjk −

i
h̵
(ξIα

k − ξ
Iα
j )A

Jβ
jk) = 0. (77)
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Here, we have used the relation in Eq. (40). In the end,
the proposed equations of motion [Eqs. (68)–(71)] strictly
conserve linear momentum within a truncated space of
adiabatic states.

B. Angular momentum conservation
To investigate angular momentum conservation, we must be

very careful now to use Eq. (6) instead of Eq. (7) for the nuclear
angular momentum, as the two definitions are no longer equivalent.
The derivative of the total angular momentum is now

J̇αtot =∑
ηγ
εαηγRIη

n π̇
Iγ
n + Tr(σ̂J̇αe + ˙̂σJαe) (78)

=∑
Iηγ

εαηγRIη
n ṖIγ

n + Tr
⎡
⎢
⎢
⎢
⎢
⎣

σ̂
⎛

⎝
J̇αe −∑

Iηγ
εαηγRIη

n Ȧ Iγ⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ Tr
⎡
⎢
⎢
⎢
⎢
⎣

˙̂σ
⎛

⎝
Jαe −∑

Iηγ
εαηγRIη

n AIγ⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (79)

As mentioned above, we must evaluate each term in Eq. (79).

● From Eq. (66), the first term in Eq. (79) can be written as

∑
Iηγ

εαηγRIη
n ṖIγ

n = ∑
IJjkηβγ

εαηγRIη
n ṘJβ

n σ̂kj
∂AJβ

jk

∂RIγ
n

. (80)

Here, we recognize −∑Iηγ εαηγ Tr(σ̂RIη
n

∂V̂
∂RIγ

n
) = 0 due to the

isotropy of space.
● Rearranging Eq. (45), we recover for the second term in

Eq. (79)

Tr
⎡
⎢
⎢
⎢
⎢
⎣

σ̂
⎛

⎝
J̇αe −∑

Iηγ
εαηγRIη

n Ȧ Iγ⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
IJjkηβγ

εαηγRIη
n ṘJβ

n σ̂kj

×

⎡
⎢
⎢
⎢
⎢
⎣

−
∂AJβ

jk

∂RIγ
n
+

i
h̵
(ξIγ

k − ξ
Iγ
j )A

Jβ
jk

⎤
⎥
⎥
⎥
⎥
⎦

. (81)

● According to Eqs. (46) and (47), the third term in Eq. (79)
becomes

Tr
⎡
⎢
⎢
⎢
⎢
⎣

˙̂σ
⎛

⎝
Jαe −∑

Iηγ
εαηγRIη

n AIγ⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= −
i
h̵ ∑IJηγβjk

εαηγRIη
n ṘJβ

n σ̂kj(ξ
Iγ
k − ξ

Iγ
j )A

Jβ
jk. (82)

Comparing Eqs. (80)–(82), we find that when adding them together,
the first term of Eq. (81) cancels with Eq. (80). The second term
of Eq. (81) cancels with Eq. (82), and hence, J̇αtot = 0. In the end,
with translation symmetry and isotropy of space, propagating the

equations of motion in Eqs. (68)–(71) conserves both linear and
angular momentum—even for a truncated set of states.

C. Choice of gauge and basis
As we found when running Ehrenfest dynamics with a com-

plete set of basis states, the above result holds for any choice of
gauge in Eqs. (25) and (26); and, more generally, if one consid-
ers Eqs. (68)–(71), one finds that these equations are completely
unchanged if one rotates the adiabatic states into some other basis set
[just as was found for Eqs. (17)–(19)]. The same proof is appropri-
ate, noting only that when we change basis, the non-Abelian Berry
curvature has the remarkable property (as shown in Sec. S2 of the
supplementary material) that

Ω IαJβ
= U †ΩIαJβU. (83)

The above-mentioned Ehrenfest theory depends only on the
window of electronic states chosen (but not on the choice of basis
states within that window).

IV. A DIFFERENT EHRENFEST APPROXIMATION
Before studying several applications of the theory above, it

is worth emphasizing that Eqs. (68)–(71) are not the only pos-
sible Ehrenfest approximations. In fact, in Eqs. (S30)–(S34) of
the supplementary material, we study a different flavor of Ehren-
fest approximations,50–52 where the electronic Hamiltonian and the
semiclassical energies in Eqs. (62) and (63) are replaced with

Ĥ =∑
I

PI
n

2

2MI
−∑

I

PI
n ⋅ AI

MI
+∑

I

AI2

2MI
+ V̂ , (84)

E =∑
I

PI2

n

2MI
+ Tr
⎡
⎢
⎢
⎢
⎢
⎣

σ̂
⎛

⎝
∑

I

−2PI
n ⋅ AI

+ AI2

2MI
+ V̂
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (85)

In the supplementary material, we show that the resulting equa-
tions still conserve the total linear and angular momentum—but
only with the choice of gauge ξ = 0 in Eqs. (25) and (26). Note that
the resulting dynamics are also not invariant to changing the adi-
abatic basis by a unitary transformation. More discussion regarding
the crucial choice of gauge and its implication for ab initio on-the-fly
dynamics are given in Sec. VII A.

V. A TRAVELING HYDROGEN ATOM
In Sec. VI, we will present an ab initio calculation exploring

momentum conservation numerically. Before presenting such data,
however, it is conceptually helpful to first treat the simplest, analyt-
ical example of Ehrenfest theory: the example of a hydrogen atom
traveling at a constant velocity. For such a system, V̂ and A are con-
stants, and neither the electronic state nor the momentum should
change as a function of time. Thus, as far as the electronic system
is concerned, we must find ˙̂σ = 0, which implies that [according
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to Eq. (19)] the electronic wavefunction must be an eigenvector of
V̂ −∑α Ṙα

n ⋅ Aα. Mathematically, we, therefore, conclude

[V̂ , σ̂] = [∑
α

Ṙα
n ⋅ A

α, σ̂] (86)

so that the electronic population in Eq. (19) does not change with
the translation of the hydrogen atom.

Let us now examine how momentum changes with time
according to the dynamics in Eq. (18). The first term −Tr(σ̂ ∂V̂

∂Rα
n
)

in Eq. (18) is zero due to the translation-invariant potential. For the
remaining term in Eq. (18), i

̵h Tr([V̂ , σ̂]Aα
), we plug in Eq. (86), and

Eq. (18) then becomes

Ṗα
n =

i
h̵

Tr([V̂ , σ̂]Aα
) (87)

=
i
h̵∑β

Ṙβ
n Tr(σ̂[Aα, Aβ

]). (88)

As the derivative couplings between certain eigenstates of the hydro-
gen atom are non-zero (i.e., 1s and 3px), Eq. (88) is non-zero.
Therefore, using the standard Ehrenfest approach in Eqs. (17)–(19)
cannot capture a translating hydrogen atom in a truncated
basis: an isolated hydrogen atom changes its momentum during
translation.

Now, there are two ways to resolve this issue: (i) One way
is to apply electron-translation factor corrections,53,54 which effec-
tively allows us to replace the Berry connection by zero, A→ 0 in
Eqs. (18) and (19), so that the wavefunction ϕ(r, t) = ϕ1s(r − R(t))
becomes a stationary state (though admittedly without any elec-
tronic momentum),55,56 and(ii) the other alternative way is to use
the effective Ehrenfest equations in Eqs. (68)–(71), according to
which the kinetic momentum feels a force from the non-Abelian
Berry curvature [Eq. (41)], so that the second term of Eq. (71)
becomes

∑
β

πβn
M

Tr(σ̂Ωαβ
) =∑

β

πβn
M

Tr{σ̂(
∂Aβ

∂Rα
n
−
∂Aα

∂Rβ
n
−

i
h̵
[Aα, Aβ

])}.

(89)

Moreover, for a hydrogen atom, A does not depend on Rn so that

∑
β

πβn
M

Tr(σ̂Ωαβ
) = −

i
h̵∑β

πβn
M

Tr{σ̂([Aα, Aβ
])}. (90)

The first term on the right-hand side of Eq. (71) is still zero, and thus,
using Eqs. (88) and (90), the right-hand side of Eq. (71) is entirely
zero. In other words, in order for Ehrenfest dynamics to properly
capture a traveling hydrogen atom, one requires inserting the non-
Abelian curvature in the equation of motion for the momentum.
Presumably, this non-Abelian Berry curvature is not needed in the
limit of a complete electronic basis.

VI. RESULTS
To verify and further investigate angular momentum conserva-

tion, we have performed Ehrenfest dynamics with [Eqs. (68)–(71)]
and without the Berry force [Eqs. (17)–(19)] for the methoxy radical,

FIG. 1. (a) (Magenta) The displacements of the first vibrational mode along which
we propagate dynamics. In (b), we plot (cyan) the atom-based spin magnetic
moments for a single GHF+SOC solution, and in (c), we plot the correspond-
ing moments for its degenerate time-reversed solution. (d) The weighted spin
magnetic moments on each atom using the initial amplitude c = ( 1√

2
, i√

2
).

a doublet that exhibits a Kramers degeneracy. The initial geometry
was optimized with the hydrogens on the carbon at the unre-
stricted Hartree–Fock level of theory. We calculated the relevant
ground state using generalized Hartree–Fock (GHF) theory, i.e., we
assume a HF ansatz where each orbital can be a linear combina-
tion of a spin-up and spin-down spatial orbital so that Sz is no
longer a good quantum number. We used the 6-31G basis set, and
we included SOC.57,58 GHF is the HF equivalent of non-collinear
density-functional theory.59 Note that the GHF ansatz converges
to one state of the doublet (hereafter denoted ∣GHF⟩); the other
state was generated by applying a time reversal symmetry opera-
tor (hereafter denoted ∣TGHF⟩). Note also that because the energies
of the Kramers doublet ground states are degenerate, the last term
in Eq. (71) is zero. The initial velocity was set to be the direction
corresponding to the lowest vibrational mode with an initial kinetic
energy of 0.005 a.u. (≈1491 K); see Fig. 1(a). The dynamics were
performed with a step size of 5 a.u. (0.121 fs). The initial amplitude
was fixed as c = ( 1

√

2
, i
√

2
) in the GHF/TGHF basis, which gives an

initial density matrix σ = cc†
=
⎛

⎝

1

2
,−

i

2
i

2
,

1

2

⎞

⎠
. The non-Abelian Berry cur-

vature in Eq. (71) was computed by a finite difference approach. The
calculations were performed in a local branch of Q-Chem 6.0.60

In Figs. 1(b) and 1(c), using cyan arrows, we plot the spin mag-
netic moments on each atom according to a Mulliken-like scheme61

at time zero for each of the two double states: one doublet state is
plotted in (b), and the time reversed state is plotted in (c) (which
is, of course, in the exact opposite direction). In Fig. 1(d), we plot
the weighted spin magnetic moments on each atom using the initial
amplitude, c = ( 1

√

2
, i
√

2
). In Fig. S1, we plot the change in the ampli-

tudes and the population during dynamics. The Ehrenfest average of
the atom-based spin magnetic moments rotates in the xy plane, as
also shown in Fig. S1 of the supplementary material.

In Fig. 2, we plot the change in the angular momentum and lin-
ear momentum during the trajectory. To begin our discussion, con-
sider first the case where the Berry force is not included [Figs. 2(a),
2(c), and 2(e)]. When the Berry force is not included, the nuclear
angular momentum is calculated from the canonical momentum Pn,
and there is no change in the nuclear momentum (red solid line).
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FIG. 2. Change in the real-time angular momentum ΔJα(t) = Jα(t) − Jα(0) (relative to time zero) according to an Ehrenfest trajectory simulating methoxy radical moving
along its lowest normal mode vibration. The nonzero initial values of components of the angular momentum are listed: Jy

spin = 0.4811 h, Jy
orb = −0.0054 h, Jx

nuc = 0.0075 h,
and Jz

nuc = −0.0048 h. The three panels (a), (c), and (e) on the left exclude the non-Abelian Berry force and correspond to the Cartesian coordinates x, y, and z shown in
Fig. 1 [and the same for (b), (d), and (f) but now including the Berry force]. Without a Berry force, the total angular momentum is not conserved; with a Berry force, the total
angular momentum is conserved. In (b) and (d), when we correctly include the Berry force, we find that the nuclear and spin degrees of freedom transfer angular momentum
between each other. In (f), the nuclear, spin, and electronic orbital degrees of freedom all exchange angular momentum. Comparing (e) and (f), we observe that the electronic
spin changes differently with or without a Berry force; this change arises because adding the Berry force can change the nuclear motion and yield a reasonably different
trajectory.

Note that the canonical momentum is conserved in this example
because the two basis states are degenerate. In the more general
case, with multiple non-degenerate states, the canonical momen-
tum would not be conserved, as previously shown in Ref. 41. In
blue, we plot the electronic spin angular momentum; in orange,
we plot the electronic orbital angular momentum. In Figs. 2(a) and
2(c), the electronic spin angular momentum changes tracks exactly
with the total angular momentum (i.e., the electronic orbital angular
momentum is effectively constant). In Fig. 2(e), both the electronic
orbital and spin angular momentum fluctuate, and the total angular
momentum appears more chaotic.

Next, consider Figs. 2(b), 2(d), and 2(f) where the Berry force is
included. Here, we see that the nuclear angular momentum [as cal-
culated from the kinetic momentum πn in Eq. (71)] changes with
time, and the Berry force captures the angular momentum transfer
from the electronic spin/orbital angular momentum to the nuclear
angular momentum. As must be true, the total angular momen-
tum is constant and conserved. (In Fig. S2, we also show numeri-
cally that the total linear momentum is conserved when the Berry
force is included.) Of most importance, when comparing Figs. 2(e)
and 2(f), we observe that the electronic spin changes noticeably
depending on whether or not a Berry force is included, clearly

emphasizing the importance of going beyond standard BO dynam-
ics (and including Berry forces) in the presence of non-trivial spin
degrees of freedom.

VII. DISCUSSION
A. Choice of phase/gauge ζ

At this point, it is essential for us to discuss our choice of phase.
For the case of a real Hamiltonian, one can choose the Hamiltonian
eigenfunctions to be real as well (in a smooth fashion), and thus,
one can ignore the gauge choice ξ in Eqs. (25) and (26). However,
in the case of a complex-valued Hamiltonian, the choice of phase is
far more complicated. Obviously, Berry phases can appear (which
should not be ignored) if one moves around in a closed loop.62

Even more importantly, for our semiclassical purposes, the choice
of phase will always be somewhat uncontrollable for ab initio on-
the-fly dynamics because one must pick the phase of the resulting
wavefunction at each step with very limited information: one does
not have the capacity to make sure that the phases of wavefunctions
are matched for similar nuclear configurations and one cannot eas-
ily attach different phase factors for translational, rotational, and
internal motions. Thus, at the end of the day, for the most part,
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FIG. 3. (a) The orientation of the methoxy radical molecule, the rotation direction, and atom-based spin magnetic moments (cyan arrows) at the initial step. (b) The rotational
angles of the molecule (black dotted line), the (completely unphysical) total spin vector as predicted by BO dynamics (red solid line), and the (more physical) total spin vector
as calculated by Ehrenfest dynamics (blue dashed line). (c) The populations for the Kramers doublet states (P0 and P1) with time from the Ehrenfest dynamics.

the usual approach is simply to align the phases of nuclear wave-
functions at two slightly different geometries (separated by one time
step) using a parallel transport. Parallel transport does not satisfy
ξ = 0 in Eqs. (25) and (26). Therefore, when running semiclassical
dynamics, one seeks equations of motion that are insensitive to the
gauge and to that end, as a practical matter, the Ehrenfest equa-
tions in Eqs. (68)–(71) have a huge advantage over those in Eqs. (84)
and (85).

B. Ehrenfest vs BO dynamics
Finally, before concluding, in order to numerically emphasize

the need to go beyond the BO approximation when treating spin
degrees of freedom, we will report one more simulation. Let us ori-
ent the methoxy radical molecule with the CO bond aligned along
the x axis; within such a frame, a GHF calculation with SOC reveals
that all spin magnetic moments point along the x axis [Fig. 3(a)]. Let
us now apply a rotational force around the y axis, with the initial
nuclear angular momentum Jnuc = (0.0, 39.28h, 0.0), and propagate
the resulting dynamics with both BO and Ehrenfest. For both sets
of dynamics, we include the corresponding Berry force (the on-
diagonal Berry force for BO dynamics36,58 and the non-Abelian
Berry force1,2 for Ehrenfest dynamics) so that both trajectories con-
serve the total angular momentum. For additional trajectory data,
and in particular for the time-dependent state populations and an
analysis of the spin angular momentum in terms of relevant ∣GHF⟩
and ∣TGHF⟩ wavefunctions, see the supplementary material.

In Fig. 3(b), as a function of time, we plot the rotational angle
for the molecule as well as the total expectation values for the spin
vectors according to both BO and Ehrenfest dynamics. As one might
expect, within the BO approximation (as calculated along a contin-
uous GHF+SOC state), the total spin vector SBO rotates with the
molecule (red line). This prediction is of course completely unphys-
ical. In reality, the spin direction does not change instantaneously
with the molecular frame but rather changes depending on the
spin–orbit coupling. This slow change of direction is correctly cap-
tured by the Ehrenfest dynamics (blue dashed line). Finally, this

BO failure can be verified in Fig. 3(c), where we plot population
as a function of time and show that, by the time the molecule has
rotated 180○ (244 fs), the populated Kramers doublet has effec-
tively switched, which represents a complete breakdown of the BO
approximation.

VIII. CONCLUSIONS
In this paper, we have demonstrated that, in order for Ehren-

fest dynamics to conserve the linear or angular momentum in a
truncated basis, the nuclei must experience a force arising from
the non-Abelian curvature Ω [as presented in Eqs. (68)–(71)]. This
result is independent of the choice of gauge for the electronic states
in Eqs. (25) and (26) or any basis transformation. As examples, we
have studied both the traveling hydrogen atom (analytically) and
the methoxy radical (numerically). Both examples make clear that
the non-Abelian curvature term is needed, and, in the case of the
methoxy radical, our data also highlight that the evolution of the
spin degrees of freedom can be different as a result. Looking forward,
the present results should have an immediate impact in a variety
of fields where nuclear, electronic, and spin motions are all entan-
gled, perhaps especially for systems displaying chiral-induced spin
selectivity.63,64

SUPPLEMENTARY MATERIAL

In the supplementary material, we include a proof of Eqs. (40)
and (44), a proof of the gauge covariance of the non-Abelian Berry
curvature [Eq. (83)], a detailed discussion of the alternative Ehren-
fest scheme in Eqs. (84) and (85) vis-a-vis momentum conservation,
and more details of the methoxy radical dynamics.
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