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ABSTRACT

Modern electronic structure theory is built around the Born-Oppenheimer approximation and the construction of an electronic Hamiltonian
A, (X) that depends on the nuclear position X (and not the nuclear momentum P). In this article, using the well-known theory of electron
translation (I'") and rotational (I'"") factors to couple electronic transitions to nuclear motion, we construct a practical phase-space electronic
Hamiltonian that depends on both nuclear position and momentum, Hps(X, P). While classical Born-Oppenheimer dynamics that run
along the eigensurfaces of the operator H,;(X) can recover many nuclear properties correctly, we present some evidence that motion along
the eigensurfaces of Hps(X, P) can better capture both nuclear and electronic properties (including the elusive electronic momentum studied
by Nafie). Moreover, only the latter (as opposed to the former) conserves the total linear and angular momentum in general.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0192084

I. INTRODUCTION
OE;

Born-Oppenheimer (BO) theory' is the workhorse of molec- P = X 4)
ular dynamics.” ° The basic premise is that one separates the slow
nuclear degrees of freedom (X) from the fast electronic degrees

of freedom (r). Mathematically, one decomposes the total Hamil- Here, our notation is as follows. We label all electronic operators (or
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tonian (nuclear + electronic, Hmt) into the nuclear kinetic energy

operator T,,(P) and the non-relativistic electronic Hamiltonian
He(X),

Htat = Tn(P) + HE(X) (1)

For the moment, we ignore external fields. If one is running clas-
sical BO dynamics, one then diagonalizes the resulting electronic
Hamiltonian,

H(X)|®1(X)) = E(X)|®1(X)), 2

and propagates Newton’s equations along the eigensurface Er(X),

X= M) (3)

more generally matrices) with a hat, boldface indicated vectors in
three-dimensional space, and we index all standard adiabatic states
by L], K,.... Atomic orbitals (AO) are indexed below by {y,v,A,0}.
The nuclei are indexed below by A, B, C, Q, and the Cartesian xyz are
indexed by afyxy.

The Hamiltonian dynamics in Eqs. (1)-(4) conserve the total
energy, the nuclear linear momentum, and the nuclear angular
momentum. However, as demonstrated recently, these calculations
do not conserve the total linear or angular momentum in general.”
One can easily reach this conclusion by imagining that we run BO
dynamics along one doublet surface, here as constructed for a system
with an odd number of electrons and spin-orbit coupling (SOC). In
such a case, the electronic wavefunction becomes complex-valued
and it is clear that the electronic linear and angular momentum of a
given state will be nonzero, changing as a function of time. However,
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Egs. (1)-(4) will conserve only the nuclear angular momentum; thus,
the total angular momentum must change as a function of time.

Given that the total angular momentum operator is strictly
diagonal in the BO representation and should formally be conserved
if one runs quantum dynamics along a single BO surface with the
correct phase conventions,” the resolution of this paradox is that one
must supplement Eq. (4) with the proper Berry force,”

i aEI Berry
P=——+F N 5
ax )
F'™ = Q- X, (6)
Qp = ihV, x di, (7)

where Q is the Abelian Berry curvature and dj = (®1|V.|®;) is
the on-diagonal derivative coupling vector between the state I and
itself. The quantity A = ihdy is also known as the Berry connection
and it is non-zero for systems with odd number of electrons’ and
SOC for which we have complex wavefunctions and Kramers’ pairs.
By including the Berry force in Eq. (5), one recovers total angular
momentum conservation with classical nuclear dynamics.”
Unfortunately, however, including a Berry force has two pit-
falls. (i) Computing a Berry force can be quite expensive numerically
because the Berry curvature involves the derivative of a derivative
coupling (i.e., a second derivative)—which must always be avoided
in ab initio calculations whenever possible. Note that the calculation
can be made simpler for the specific case of a ground state calcu-
lation where the tensor has been derived and implemented for a
generalized Hartree-Fock (HF) ansatz, "' but, overall, it is certainly
desirable to avoid the Berry curvature for excited state dynamics. (ii)
For the case of a system with electronic degeneracy (i.e., Kramers
doublet), the notion of a Berry force is tricky and somewhat arbitrary
because one must arbitrarily pick one doublet (e.g., I) out of a pair
(e.g, LI'). One can avoid the second pitfall by running Ehrenfest
(mean-field) dynamics,'” calculating the electronic density matrix
p over a set of states and, as prescribed by Takatsuka'’ and then
Krishna,'* including the non-Abelian curvature'” in the force,

ABaCB _ AP 9AB* iBa 4 CP
= X~ oxg A A7 ®)
Ba Cp
In such a case, one never needs to pick an arbitrary surface within
a Kramers’ pair and one does recover total (linear and angular)
momentum conservation.'> Alas, however, computing the non-
Abelian Berry curvature in Eq. (8) is even more expensive than
computing the Abelian Berry curvature in Eq. (7), and hence, the
method will likely need future approximations to be practical for

large systems.

A. Phase-space electronic Hamiltonians

Now, apart from including a Berry force of any kind, an alterna-
tive means to conserve the total momentum is to work from the start
with a phase-space electronic Hamiltonian that depends on both
nuclear position and momentum, Hps(X, P),

. PP P, .
HPS(X,P) = m - th 'r+Hel(X), (9)
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Here, we emphasize that the nuclear momentum operator has been
replaced by the classical momentum P and T is a nuclear-electronic
coupling to be determined.'® The most famous example of Eq. (9)
is Shenvi’s phase-space electronic Hamiltonian'” in an adiabatic
electronic basis,
, PP P-d
Hspenvi(X, P) = M ik ” h

d-d
2W+Ead(X), (10)
where £,y is the diagonal matrix of eigenvalues of H,(X) and d is
the density matrix of derivative couplings, which couples different
electronic states I, J, where

P-d=Y Pad™, (11)
Aa
d-d=Y d*a, (12)
Aa
0
a

As shown in Ref. 16, if we diagonalize Hgjer; (X, P) and run clas-
sical dynamics along the corresponding eigensurfaces (that depend
on X and P), we will indeed conserve the total linear and angular
momentum.

Alas, there are also problems with the Hamiltonian in Eq. (10),
some conceptual and some practical. (i) First, one limitation arises
in the case of degenerate states, e.g., doublets. In such a case, given
the complex-valued nature of the SOC, one must arbitrarily choose
two basis states (|®@;) and |®;/)) and two complex-valued phases for
each state, which leads to an arbitrary d in Eq. (10), which ulti-
mately renders the phase-space Hamiltonian of limited value in such
a case; the algorithm cannot be reliable for systems with electronic
degeneracy, e.g., systems with odd numbers of electrons. (ii) A sec-
ond limitation is numerical stability. Near a conical intersection, the
derivative coupling d will diverge, and one will recover spikes in the
eigenenergies of Hshenyi (X, P) in Eq. (10).'¥ (iii) A third limitation
is computational cost. For a number of N adiabatic states, the algo-
rithm requires the computation of N(N + 1)/2 numbers of derivative
couplings to construct Hspenvi (X, P) in Eq. (10), and as discussed
above, running dynamics on the potential energy surfaces requires
the derivatives of those derivative couplings. For these reasons, as
far as we are aware, no one has ever worked with the Hamiltonian in
Eq. (10) for any ab initio calculations. Thus, it is desirable to approx-
imate the derivative coupling vector while maintaining important
features, such as momentum conservation.

B. Necessary conditions for linear and angular
momentum conservation

Interestingly, to satisfy momentum conservation, Eq. (10) is not
the only phase-space Hamiltonian. In fact, if at all one seeks momen-
tum conservation, one does not need to compute d necessarily. As
discussed in Ref. 16 in the phase-space surface hopping context,
if one works with a subspace of adiabatic states and introduces a
I} matrix (in place of the derivative coupling), one can ensure
momentum conservation as long as the following four conditions
are satisfied:

— il T + (®|pl|@y) = 0, (14)
A
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> Vagly' =0, (15)
B
- lhz eaﬁyXAﬁl“f}" + <(DI|IA/Z +5° q)]) =0, (16)
APy
Z eaﬁvXBﬂVBﬂry + Z eayﬂr}a}q =0, (17)
BBy 1

where €,, is the Levi-Civita symbol. Below, we will write the matrix
elements of the electronic linear momentum operator py, the elec-
tronic orbital angular momentum operator LY and the electronic
spin operator 3“ in AO basis as p,, L, and s, respectively.

On the one hand, the conditions in Egs. (14) and (16) are really
phase conventions,® i.e., the conventions for choosing the phases
of the electronic states at different geometries. On the other hand,
the conditions in Eqs. (15) and (17) ensure that the coupling trans-
forms are invariant under translational and rotational changes of
coordinate,

)% (Xo + 0X) = I'*(Xo), (15")
I'y(RXo) = RTy(Xo), (17"

where R is the rotation operator in the Cartesian xyz space,
R =exp (-3 X, L), and Ly, = —iheyp,. As aside note, as shown in

Ref. 16, the full derivative couplings d do satisfy all four constraints
[Egs. (14)-(17)].

Now, with so many choices for I'yy possible in order to conserve
momentum, one must wonder what is the optimal path for building
such a term. For practical purposes, one would prefer the simplest
way possible. In particular, one would like to avoid the cumbersome
process of diagonalizing the electronic Born—-Oppenheimer Hamil-
tonian, generating states I and J, adding a momentum-dependent
term P - Ty in the spirit of Egs. (1)-(4), rediagonalizing the result-
ing phase-space Hamiltonian, and then generating gradients for
dynamics. Such a multi-step approach is not very practical.

C. Outline of this paper

The goal of this paper is to provide an alternative, one-
shot treatment for generating phase-space Hamiltonians with
TI'-couplings. More precisely, we will derive and implement a mean-
ingful T matrix that arises from a one-electron operator so that, at the
end of the day, we need only to diagonalize a single electronic Hamil-
tonian, and motion along the resulting surfaces will automatically
conserve momentum while also being very efficient.

To that end, in Sec. II below, we will show that Egs. (14)-(17)
for I'yy can indeed be satisfied for a proper one-electron operator
I‘Ma}:av in an atomic orbital basis, Ty = ZW <(I>1\I'Ma;av|(1)]), and
we will delineate the necessary conditions for I, in order to con-
serve linear and angular momentum. Next, with so many possible
choices for T, in Sec. 111, we will posit that one means for isolat-
ing a physically meaningful one-electron operator I'y, is to insist
that the phase-space electronic Hamiltonian should yield the correct
expression for linear (and sometimes angular) momentum (which
requires a beyond Born-Oppenheimer calculations as developed by
Nafie'’ 13). Finally, in Sec. IV, we provide results, demonstrating
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both the size of the relevant matrix elements as well as the capacity
of the resulting method to recapitulate electronic momentum and
angular momentum. In Sec. VI, we discuss the future implications
of this work and conclude.

Il. THEORY: A STABLE ANSATZ FOR A ONE-ELECTRON
HAMILTONIAN OPERATOR I,

While Egs. (14)-(17) dictate the form of I'y in a many-body
basis, the relevant conditions required of a single electron opera-
tor I'y, are slightly different because the orientation of each atomic
orbital is always fixed in the lab frame and does not rotate with the
molecule. In other words, for example, for a rotation molecule, a
p, orbital is always polarized in the x—direction. Nevertheless, we
will show below that if the following conditions are obeyed:

— kY Tos +ply = 0, (18)
A
Aa
Z VB[SFyv =0, (19)
B
— i1 €apyXapTil + Ly + 58y = 0, (20)
Apy

ar4r i
€aprXnp{ptl oo v) — — (1
B%% pr-Bp 8XB,7 h

[ L5]v) + 3 €eapnlid =0, (21)
n

then the linear and angular momentum will be conserved. Similar
to the many-body case above, we note that Eqs. (19) and (21) are
equivalent to

Ty (Xo + 0X) =T (Xo), (19)

I‘,;;,(RXO) = Rr;w(XO). (211)

Here, a word about notation and basis set definition is essential.
If |v) is centered on atom B, and the molecule is rotated by an
amount 8, then here we define the atomic orbital |[v) in Eq. (21")
to be that orbital generated by rotation around atom B by the same
rotational angle, [v5) = exp (-1 %, 15*8,)|vs). As mentioned above,
the fact that atomic orbitals are defined in a lab frame (rather than
molecular frame) within quantum chemistry codes leads to the dif-
ferences between Egs. (21) and (21") with Eqs. (17) and (17") above
(where the indices of T(RXy) are ji, ¥ instead of y,v). The equiva-
lence between Eqgs. (21") and (21) for a general one-electron operator
is shown in Appendix A.

A. Equations of motion

Let us now prove the claims above about momentum conser-
vation. We begin by writing the total energy of the phase-space
Hamiltonian for a single state in an atomic orbital basis,

2

P . PAarﬁg
Eps(X,P) = YT > Dy by — zh; AT Z/\: G v
uv a uvio

(22)

where the quantities D,, and G, are the one-electron and two-
electron density matrix elements obtained from solving the phase-
space Hamiltonian directly, respectively. The h,y and ), matrix

J. Chem. Phys. 160, 124101 (2024); doi: 10.1063/5.0192084
Published under an exclusive license by AIP Publishing

160, 124101-3

G271¥0 ¥20C YdielN o€


https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics

elements are the relevant one-electron and two-electron operators
in the atomic orbital basis. Given this energy expression, we can
write the classical equations of motion to propagate the phase-space
variables (X, P),

< Paa . Dv,urﬁwft
Xaa = W - lFlZ MA > (23)

PAoc = (24)

Ohy ihPyg OTph
— D,, wo “
% "( OX pa 20 X

BB

o, oS,
Z Gv,w/\ ,uv)tu Z va }w
uvio

(25)

where the § matrix is the overlap matrix and W is the
energy-weighted density matrix. In going from Egs. (24) to
(25), we avoid the expensive step of calculating the orbital
dependence on the nuclear positions according to Wigner’s
(2n + 1) rule (which is well-known in quantum chemistry).”>** Now,
let us examine the momentum conservation laws.

B. Linear momentum

For the case of linear momentum conservation, using Eq. (23),
one evaluates

d . d . o
EPW = dt(ZA: MaXaa + %v: Dwa) (26)

_d 3 Paa+ Y. Dy > — ikl + pl, (27)
dt A uv A
Now, if we plug Eq. (18) into Eq. (27), the second term on the right-

hand side (RHS) vanishes, and we can simplify

d ("1 ' aEPS
—Piy = Ppo = — . 28
dt ZA: 4 ZA: 0Xaa 28

From Eq. (28), one concludes that in order for the total linear

momentum to conserve (%Pff)t = 0), the phase-space energy needs
azs,,s

to be translationally invariant (3, 5
and plug Eq. (25) into Eq. (28), we ﬁnd

=0). If we dig a little deeper

rB‘;

d
Py =iy (29)

Bfuv M

Note that, in Eq. (29), we have already excluded the relevant
huvs Tug> and S,y terms from the gradient because these matri-

L . . oh Bn
ces are translation-invariant, i.e., >4 axﬂ =0, >4 W" =0, and

A g;’:‘” =0. Finally, we conclude that accordmg to Eqs. (19)

and (29), P%, = 0. Thus, conditions Eqgs. (18) and (19) are sufficient
to guarantee linear momentum conservation.

ARTICLE pubs.aip.org/aipl/jcp

C. Angular momentum

Next, we evaluate the angular momentum,

d df .
ZL?ot = Z Z eaﬂyXAﬁMAXAy + Z (l;[:v + SZV)DW (30)
t t | ABy uv
daf ,
= Z Z eaﬁyXAﬁPAy + Z (ﬂhea/;yXA/;l“ﬁv" + lf:v + S;‘V)DVH .
t | ABy ApvBy

(1)
If we plug Eq. (20) into Eq. (31) to eliminate the second term on the
RHS of Eq. (31), we are left with

d . . .
Lo =2, eapy(XapPay + XagPay) (32)
t APy
OEps OEps )
€y PA XA . (33)
AZM ﬁy( FoPyy, "M 0Xay

From Eq. (33), it follows (not surprisingly) that in order for the total
angular momentum to be conserved, the energy of the phase-space
electronic Hamiltonian must be rotationally invariant. Mathemati-
cally, requiring a vanishing RHS of Eq. (33) is equivalent to requiring
the energy Eps(X, P) in Eq. (22) to satisfy

Eps(RX, RP) = Eps(X, P). (34)

Let us now evaluate all of the terms in Eq. (22) individually. To
begin with, one can immediately see that the nuclear kinetic energy
is rotationally invariant because P* = RP - RP. For the remaining
contributions in Eq. (22), we recall that the one-electron and two-
electron operators written in the atomic orbital basis satisfy

hg(RXo) = huw(Xo), (35)

ﬂp.iui&(RXO) = ﬂyw\a(xo)- (36)

Equations (35) and (36) are proven in Appendix A. Here, if we rotate
the molecule by a rotation R, we also imagine rotating all of shells
of basis functions around each atomic center by the corresponding
unitary matrix U(X) to generate rotated basis functions. In other
words, if [v) € S, for a specific shell (S), we define: |[V) = 3, . |v) Uvp.

Finally, as far as the I' matrix is concerned, according to
Eq. (21"), we know that

P T (RXo) = RP - RT;,(Xo) = P-Ty(Xo). (37

Therefore, at the end of the day, all of the matrix elements
within the energy expression Eps from Eq. (22) are rotationally
invariant, and it follows from a variational treatment that the one-
and two-electron density matrices must also be rotationally invari-
ant [Dg(RXo) = Dy (Xo), GWW(RXO) = Guyio(X0)]. Thus, we may
conclude that, so long as the I' matrix satisfies the four conditions
given in Egs. (18)-(21"), the energy Eps will also be rotationally
invariant and satisfy Eq. (34).
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D. An ansatz for T from the theory of electron
translation and rotation factors?®

3,26-28

For a practitioner of surface hopping dynamics, one
immediately recognizes the constraints in Egs. (18)-(21"), as these
are the constraints that guide the construction of electron transla-
tion factors (ETFs)” and electron rotation factors (ERFs),”’ which
are discussed in a companion paper (Ref. 25). See Egs. (15), (16),
(A5), and (B18) in Ref. 25. To that end, some words of background
are appropriate here.

During the course of a surface hopping trajectory, it is well
established from model studies’ " that, when hopping from state
I to state J, the nuclear momentum should be rescaled in the direc-
tion of the derivative coupling vector dj; in order to conserve energy
(and establish a balance between kinetic and potential energy). How-
ever, from a mathematical point of view, this momentum rescal-
ing scheme changes the total momentum because the derivative
couplings satisfy

—ihy di = —(®1|pt|@y), (38)
A

- ihzﬁ: eapy X)) = —(@|LE +3%D)). (39)
ABy

The above equations for dy are exactly the same as Eqs. (14) and
(16) for the T'y coupling and reflect a phase convention for the elec-
tronic states |®;) and |®;).® From a physical point of view, the RHS
of Egs. (39) and (38) is nonzero because whenever the nuclei move
along one adiabatic state, that motion also drags around electrons.
Thus, whenever the molecular nuclei are translated and/or rotated,
that motion can induce changes in electronic linear and/or angular
momentum and eventually lead to an electronic transition.

Now, the fact that rescaling along the derivative coupling direc-
tion destroys the conservation of nuclear linear and angular momen-
tum has long bothered chemists.'*”"”* For the most part, chemists
have regarded this failure as a limitation of semiclassical mechan-
ics and the desire has always been to fix this problem by restoring
the linear and angular momentum of the nuclei in some fashion or
another.”””*"” To that end, in Refs. 29 and 30, in order to restore
nuclear momentum conservation, we previously sought to remove
the offending translational and rotational components of the deriva-
tive coupling, i.e., which leads to the notion of ETFs and ERFs,
respectively.

1. Electronic translation factors

We begin with ETFs. ETFs restore linear momentum conser-
vation and can be isolated by working on a translating basis.”* ** As
a practical matter, constructing an ETF to restore linear momen-
tum conservation is quite trivial from an electronic structure point
of view: in any AO basis, whether for multireference configuration
interaction (MRCI)** or configuration interaction singles (CIS)*
or time-dependent density functional theory (approximate)'®
wavefunctions, one always finds that the derivative coupling vector
between states I and J naturally decomposes into

di' =dj’" + dj, (40)

ARTICLE pubs.aip.org/aipl/jcp

where di'" is effectively the matrix element for the one-electron
momentum operator,

dETRAT (I\Fﬁ“ajavu), (41)
uv
pae_ 1 (8pa + 8ca) (42)
w = Zihp#v BA CA ).

Here, in Eq. (42), we assume |u) is centered on atom B and |v) is
centered on atom C. Mathematically, I’ in Eq. (42) clearly satisfies
Eqgs. (18) and (19).

On a very practical note, dj; is what remains after subtract-
ing away the ETF component and it is straightforward to separate
dj"" from df) because the latter scales like 1/(E; — Ey) and blows up
around a conical intersection; the former does not.

2. Electronic rotation factors

Next, we consider ERFs; altogether, a combination of ETFs and
ERFs should restore linear and angular momentum. Now, while
EREFs are rarely discussed in the literature (as compared with ETFs),
by working on a basis that both translates and rotates, we have
recently shown that one can indeed construct ERFs.”>”" Thus, one
can decompose the total derivative coupling into three parts: an
ETF part, an ERF part of the derivative coupling vector, and the
remaining part

di' =i’ + di" + dy, (43)
where
di ™ = 3 (@il el ;) (44)
uv

Here, the form of I is necessarily more complicated than the form
for I because the latter can be a local one-electron operator and the
former only a semi-local one-electron operator.”””’ Using the same
atom labels (A,B,C) as above for the ETFs [Eq. (42)], according to
Ref. 25, one reasonable form for I'”’ is*

1A

r;u/ = (;V(XA _ng) X (K[:VII},{V)’ (45)

where

1 1,, N
Juw = %<#|E(Lf +Lec)

v), (46)

A _ o 2|(Xa - X8)P(Xa - Xo)
Qwa%im&fhWHerﬂz’ 47
Xov =2 0 Xa/Y G (48)
A A
K ==Y Gu(Xa = X)) (Xa - X0) T5
A
+ 3 (X - X0) (X4 - X0,) (49)
A

Here, 73 is a 3 x 3 identity matrix. The parameter w here con-
trols the locality, and in Ref. 25, 0.3 bohr™* was found to be a safe
choice. See the discussion below for the importance of locality for
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ERF. The definition of one of the Cartesian components () of L in
Eq. (46) is

Z €npyXnppe- (50)
By

P = [(re = Xs) % pe], = 12 -

Although slightly more involved, it can be proven® that the
one-electron matrix elements,

Ty =T, + T, (51)

satisfy both Egs. (18) and (20) above. Finally, as shown in Ref. 25, the
ETF + ERF matrix I'y, transforms correctly under translations and
rotations of the molecule. In particular, Eqs. (A5) and (B18) in Ref.
25 are identical with Eqgs. (19) and (21) above.

3. A phase-space Hamiltonian
that approximates Eq. (10)

At the end of the day, choosing the I'-couplings in Eq. (9) to be
the ETFs + ERFs from Ref. 25 makes a great deal of sense. In short,
rather than removing out the dirr and degrp vectors and rescaling
along the dy direction within a standard surface hopping calcu-
lation, we imagine including explicit momentum coupling to the
ﬁETF and ﬁERF vectors within a phase-space electronic Hamiltonian.
Heuristically, this choice can be rationalized by rewriting Eq. (10)
above as

4 P> P-(dgrr+ dere + do
HShenvi(X)P) = m —ih ( M )

- K ﬂ + B q(X). (52)

Our recommended choice of the phase-space electronic Hamilto-
nian [using Egs. (9) (45), and (51) above] is equivalent to
removing the P - dy term (Wthh is gauge-dependent and explodes
in the vicinity of avoided crossings but vanishes far from crossings)
as well as the d - d term (which is often neglected in an % expansion)
in Eq. (52).

Ill. THE MISSING INGREDIENT: ELECTRONIC
MOMENTUM

We have made the hypothesis above that a meaningful choice
for T in Eq. (9) is to set these couplings equal to the sum of the ETFs
and ERFs in Egs. (42) and (45). One means of judging the value of
such an ansatz for couplings is to compare the resulting predictions
for electronic momentum vis a vis Nafie’s celebrated expression'” **
for electronic momentum. At this point, a brief interlude
(and review) of Nafie’s work is appropriate.

To begin our review, note that one obvious failure of the BO
approximation is the fact that motion along an adiabatic surface
does not carry any electronic momentum.” ° Mathematically, for
any electronic wavefunction |®;) constructed by Eq. (2), (®;|p.|®D1)
= 0. This failure can be addressed by going to a higher order in BO
theory."””"*° and identifying either the momentum or the electronic
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flux.”*® Mathematically, if we regard the term —ih%’i as the pertur-

bation in Eq. (10), one can construct the perturbed wavefunction as
follows (by summing over all other electronic state J):

<]|ZA—MA>‘(D/)) (53)

|\I’1 |(D[ lh

where ( ®;|d A|<D;> = dj. We can now evaluate the expectation value
of (¥i[pe|¥1),
) (

ptat
oy, Bl
2HmY" M
J=I 1= L

(Y1pe¥1) =

). (54)

At this point, let us assume a complete basis, restrict ourselves to the
case of no spin-orbit coupling, and use the commutator,

[He, ] = —ine. (55)
me
From this exact relationship, it follows that:
N L 1 .
(Er = Ey)(@iffe|®7) = ~ih-~(P1pe| 7). (56)

Then, if we plug Eq. (56) into Eq. (54) and use the fact that
(®7]d*|®;) = 0, we find

R PA a4
(Yilpe|¥1) = 2mRe) (@[> O [ Dr|ie| D7) (57)
] A
A
=2 eR () e 58
m e< ,r; o ) (58)
d
:ZmeRe<(D1|re|dt > (59)
. d .
(Wrlpe|¥1) = me—(D1|fe| D1). (60)

dt

Equation (60) is Nafie’s celebrated final result for the electronic
momentum. Clearly, Eq. (60) should be satisfied (or approximately
satisfied) with a meaningful choice of I. In the extremely well-
separated adiabatic limit, where there are minimal nonadiabatic
interactions, this expression is the physical electronic momentum.
One means of checking the validity of any choice of I, [with the
corresponding phase-space Hamiltonian in Eq. (9)] is to evaluate
the electronic momentum and see whether or not the result satisfies
Eq. (60).

As a side note, we mention that Eq. (60) is valid in the adiabatic
limit, i.e., when moving along a well-separated adiabat E;. If one
performs a nonadiabatic simulation and wishes to estimate the elec-
tronic momentum from a collection of states using a complete basis
and a full CI Hamiltonian, one can derive a proper expression for the
electronic momentum by using the corresponding electronic density
matrix; as shown by Takatsuka,”” one can even check the validity
of the continuity equation for the electronic momentum probability
density in a finite basis. Our hope for the present electronic phase-
space Hamiltonian is that one will be able to compute electronic
momenta from a single adiabatic state calculation (as opposed to a
full nonadiabatic calculation) in the adiabatic limit.
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A. Beyond Nafie: The search for electronic
angular momentum

Beyond linear momentum, we would also very much like a
means to benchmark the predicted electronic angular momentum
as well. Unfortunately, however, the approach from the previous
section cannot be generalized to the case of angular momentum and
there is no simple final expression [as in Eq. (60)] for <‘{’1’ie|‘I’1). The
reason is simple: While Eq. (60) above is the quantum mechanical
analog of the classical expression, P.= me%, there is no analogous
expression for rotations. For a simple rotation in two dimensions,
one can write L= 7 %, where L is the angular momentum, Z is the
moment of inertia, and 6 is the relevant angle; however, for a multi-
dimensional problem, there is no unique 0 and Z becomes a matrix.
Mathematically, one big issue is commutativity: whereas p; and
pJ commute, [* and I do not commute, and this lack of commuta-
tivity prevents any multidimensional analog of Eq. (60) for angular
momentum. Thus, in principle, if one wishes to estimate the elec-
tronic angular momentum, one needs to evaluate a full sum over
states as in Eq. (54), which is indeed painful.

Nevertheless, in the limit of the two-dimensional motion of
a rigid linear (or linear like) molecule in the xy plane, the algo-
rithm above can be partially adapted by recognizing that the relevant
quantum mechanical expression is

. w0 I?
DT v~ el (61)
2m,r; 06 2m,r,
[H, mergé] = —ih-L.. (62)

Here, we transform to relative coordinates, assume the center of
mass is placed at the origin, and define 2 = x* + y* as the distance
of the particle away from the origin.
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Proceeding as we did above between Egs. (54) and (60), it
follows that

(wilicfwr) = me D (@rf2dlon) = mert & [o0r(@)an (63)

For a linear or nearly linear molecule aligned along the
x axis, let us make the assumption that the electronic den-
sity is localized around 8=0 and 6= (but vanishes around
0 = +7/2). In such a case, we can expand the Cartesian coordinates
(%,y) = (recos(0),r.sin(0)) around 6 =0 and 6 =7 and obtain
(%,9)|o=0  (re,7e0) and (x,)|o=r ~ (=7e,—7e(0 — 7)) at the zeroth
order, respectively. Therefore, in the vicinity of 6 = 0, xy = 76; in
the vicinity of 0 = 7, xy = r20 — r27. Note that because the integral
(®;| - 7r2|®;) is a constant (for a rigid rotor with r, fixed), this
term gives zero when taking the time derivative. Therefore, we can
evaluate the final integral as

AA

me%<(l>1|rfé|(bl) = mei |0r) = —ilxy. (64)

dt( dt

Below, we will check whether our electronic phase-space
Hamiltonian satisfies Eq. (64) for the case of linear molecules
undergoing rigid rotation.

(O

IV. NUMERICAL RESULTS

We will now present numerical results testing the ability of
our proposed phase-space electronic Hamiltonian in Eq. (9) to
recover the correct linear and angular momentum. Our numeri-
cal results are within a Hartree-Fock (HF) framework that, though
not exact, should offer a good enough starting point. The bench-
marks for linear and angular momentum were computed by a
finite-difference (FD) Hartree-Fock approach according to Egs. (60)
and (64), respectively. All the geometries used were optimized at the
HF level with a cc-pVTZ basis set, and the coordinates are given in
Appendix B. We investigate the effects of different basis sets, and

TABLE I. The a components of the linear momentum (h/ag ) calculated with a translational velocity along the « axis. The linear molecules are aligned along the x axis, and we
report translations for the « = x, y directions. The finite-difference (FD) approach in Eq. (60) serves as the benchmark and does not change with different basis sets. The linear
momentum calculated with the phase-space Hamiltonian approaches the finite-difference values for larger basis sets.

STO-3G DZ aDZ aTZ Qz aQZ FD

H, (p¥)  7.94x107*  141x107°  141x107°  142x107°  143x107° 143x107° 143x107° 143 x107°
(p?) 0.00 769x107"  1.41x107°  120x107°  143x107°  1.33x107° 143 x107°

LiH (p¥y  283x107*  777x107*  9.07x107*  1.10x107°  116x 1070  128x107°  131x107°  1.44x107°
(ply  222x107*  607x107*  751x107"  9.14x 107" 1.01x107°  121x107° 125x107°

HCN  (p) 118x107° 209x107° 216x107° 239x107° 243x107° 262x107° 263x107° 274x107°
(p2) 180x10™*  1.63x107°  200x107° 225x107° 238x107° 257x107° 261 x107°

H,O0'  {(p2)  506x107"  1.63x107°  1.93x107° 2.09x107° 218x107> 228x107° 232x107°
(pl)  447x107*  1.60x107°  1.92x107°  208x107°  218x107° 228x107° 232x107°  240x 107
(p3)  203x107°  1.39x 107  1.86x107°  201x107° 216x107° 224x107°  231x107°

*For the triatomic water molecule, we report the electronic momentum in the x—direction-assuming we translate the molecule in the x—direction (so forth for the y and z directions).
For the FD approach, assuming we translate along the x—direction, we find (p}) = (p) = 0 and so all relevant information is included in Table I. For the phase-space approach, (p/)
can be non-zero, but the momentum is usually at least two orders of magnitude smaller than (p}), and so is not included in the table either.
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TABLE II. The nonzero components of the linear momentum (h/ag ) calculated with a velocity that corresponds to stretching one H atom along the x axis. All the linear molecules
are aligned along the x axis. The finite-difference (FD) approach serves as the benchmark and the results converge with larger basis sets. The linear momentum calculated with
the phase-space Hamiltonian matches qualitatively the finite-difference values for reasonably large basis sets.

STO-3G DZ aDZ TZ aTZ QZ aQZ
H, (p%) 5.62x107* 9.96 x 107 9.99x 107 1.00x 1073 1.01x107° 1.01x1073 1.01x107°
FD 1.01x107° 1.01x1073 1.01x107° 1.01x1073 1.01x107° 1.01x1073 1.01x107°
LiH (p%) 1.87x107* 7.17x107* 9.62x107* 5.68x107* 426%107* 4.48x107* 2.01x107*
FD 1.07x 107 1.45%x 1073 1.48x107° 1.50x 107> 1.51x107° 1.50x 1073 1.51x107°
HCN (p¥) 530x107* 6.76 x 107 9.54%x 107 1.02x107° 7.09% 107 1.14x107° 7.34% 107
FD 6.16 x107* 7.16x 107 7.24x107* 734x107* 7.25x107* 7.27x107* 7.26x107*
H,0* (p%) 3.57x 107 7.11%x107* 6.67x 107 2.75%x 107 513x 107 2.03x107* 7.74% 107
FD 1.17x 1073 8.16x 107 8.06x 107 8.19x 107 8.02x 107 8.09x 107 8.02x107*
(p) 582x107°  —6.86x107°  —420x107°  -1.08x107* = -121x107°  -1.96x107*  -721x107°
FD —459%x107°  -1.96x107°  -507x107°  -398x107°  -501x107°  -457x107°  -505x107°

*The water molecule is placed in the xy plane with one of the O-H bonds aligned along the x-axis. Stretching this O-H bond along the x axis yields a relatively large linear momentum
in the x direction ((p})) and a relatively small linear momentum in the y direction ((p})).

TABLE Il. The z components of the angular momentum (h) calculated with a velocity that corresponds to a rigid rotation around the z axis. All the linear molecules were
aligned along the x axis with the center of mass placed at the origin. The finite-difference (FD) approach serves as the benchmark and converges quickly with larger basis sets.
The angular momentum calculated with the phase-space Hamiltonian agrees reasonably well with the finite-difference values given a decent size of basis sets. The agreement

improves at the stretched geometry of H, as the majority of the density distribution resides within a small angle with respect to the x axis.

STO-3G DZ aDZ TZ aTZ QzZ aQZ
H, (L2) 0.00 5.28x107° 7.50%107° 721%x107° 7.28x107° 7.29%107° 7.35%107°
FD 571x107* 458 x107* 453x107* 442 x107* 411x107* 425x107* 415x107*
Stretched H, (L2) 0.00 6.91x107° 2.26% 107> 1.34x 1072 2.36%x 107 1.70 x 1072 2.38%x 1072
FD 4.84x 1073 2.76 x 1072 2.61x 1072 2.72 %1072 2.60x 1072 2.69x 1072 2.59 x 1072
LiH (12) 5.74x 107 9.38x107° 1.07x 1072 1.07x 1072 1.12x1072 1.11x 1072 1.13x 1072
FD 7.57x 1072 8.98x 107° 9.27x 1073 9.37x 1073 9.50 x 10~° 9.46x 10~° 9.51x 1073
HCN (12) 2.47x107 349x107° 3.70x 107 3.98x 107 4.05x107° 425%x107° 427x107°
FD 3.80x 1073 3.62x107° 3.60x 1073 3.60x 1073 3.59x 1073 3.60x 1073 3.59x 1073
C4H, (12 1.54x1073 7.49x107° 8.88x107° 9.71x107° 1.03x 1072 1.09x 1072 1.11x1072
FD 1.14 x 1072 1.13x 1072 1.13x 1072 1.13x 1072 1.13x 1072 1.13x 1072 1.13x 1072

use the acronyms XZ for cc-pVXZ and aXZ for aug-cc-pVXZ basis
sets in Tables I-VI. All the linear molecules are aligned along the
X axis.

We begin by checking the accuracy of the linear electronic
momentum as computed with the phase-space Hamiltonian when
the entire molecule translates. In Table I, we show the « components
of the linear momentum as calculated with a translation velocity
along the « axis and a magnitude corresponding to room temper-
ature thermal motion. The FD approach uses a time step of 1 a.u.
(1 a.u. = 0.0242 fs). The linear momentum values calculated with
the FD approach [Eq. (60)] serve as the benchmark and do not
change much at all with different basis sets for translation motion.
According to Table I, the linear momentum calculated with the

phase-space Hamiltonian approaches does converge to the finite-
difference values for larger basis sets. This convergence demon-
strates that, despite using a single state, the practical phase-space
method at the Hartree—Fock level can effectively capture the elec-
tronic motion going slightly beyond the BO approximation—when
given a reasonably large basis set. Note that adding the one-electron
rotation factor I" does not change the results in Table I at all due to
the invariance of I’ with respect to translation, 3", F,','VA“ =0.

Next, we examine the linear momentum for internal motion.
In Table II, we report the linear momentum when moving only the
H atom with a velocity that again corresponds to room temperature
thermal motion. According to Table II, the linear momentum cal-
culated with the FD approach does converge with larger basis sets.
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TABLE IV. ([2) values (h) as calculated for a rigid rotation of one LiH molecule in the absence and in the presence of another molecule located far away in space. Because
of the large distance between the molecules, the angular momentum of the first LiH molecule should be the same in both calculations. The phase-space approach results are
reported with T = T’ only and T = T’ + I'”. When T/ is included, two choices of the locality parameter w = 0 (non-local) and w = 0.3 (semi-local) are investigated for the two
LiH systems. (For the single LiH system, w = 0 and w = 0.3 give the same results.) Only the w = 0.3 data give consistent results for the LiH molecule. The data here prove
conclusively that one cannot pick w = 0 (and ignore locality) if one seeks meaningful results.

STO-3G DZ aDZ TZ aTZ QZ aQZ
Two LiH r 9.11x107*  350x107°  622x107°  493x107°  755x107°  577x107°  6.85x107°
'+ (w=0) 627x107*  315x107°  596x107°  459x107°  733x107°  546x107°  6.58x107°
'+ (w=03) 574x107°  938x107° 1.07x107> 1.07x107> 1.12x107> 1.11x107* 1.13x107*
Single LiH r 911x107™*  350x107°  622x107°  493x107°  7.55x107° 577x107°  6.85x107°
Ir'+1” 574x107° 938x10™°  1.07x107% 1.07x107% 1.12x1072 1.11x1072 1.13x1072
FD 757x107° 898x107°  927x107%  937x107°  950x107°  946x107°  9.51x107°

By contrast, for molecules other than the H, molecule, the linear
momentum as calculated with our phase-space approach does not
converge as well with larger basis sets, insofar as diffuse functions
clearly create differences. Nevertheless, when a decently sized non-
augmented basis set is used, such as a cc-pVDZ basis set, we find that
the linear momenta calculated with the two approaches does agree
at least qualitatively. Note that, here, the one-electron rotational fac-
tor I’ has not been included. Including the rotational factor changes
the results of the H,O molecule by only a small amount, as given in
Table V in Appendix C.

The discrepancies between the two approaches in Table II can
be understood as follows for the specific case of an HF ansatz. Let us
write out Nafie’s expression for the electronic momentum in an AO
basis (where D, is the relevant density matrix),

line). The equilibrium bond distance is 3.0374 bohrs, and we set
the hydrogen momentum to be Py = 1.8 a.u. (i.e,, vg = 0.001 a.u.);
here, a positive value of Py stretches the molecule. Between 2 and
8 bohrs, there is a Coulson-Fischer (CF) point at ~4.3 bohrs, where
the HF state transitions from closed shell (ionic) to open shell (birad-
ical). Around this CF point, the FD unrestricted approach yields a
negative spike in linear momentum. Physically, when we increase
the bond distance, there is a large decrease in the electronic posi-
tion expectation value (@] £|®;) because, as the molecule transitions
from the ionic configuration (Li‘s+—H5_) to a biradical configura-
tion (Li*-H"*), and electron jumps back from the H nucleus to the
Li nucleus. At this CF point, where the orbital response is enor-
mous, obviously, the two expressions for electron linear momentum

N d
= m,— (¥ 65 —-7.875
(pe) = me (5 (65) -
d —~ —7.900
b meﬁz Doty (66) 8 —7.025
uv =
S —7.950
d d &
= mez (*Dw “Tyuy + Dy, - —rw), (67) -7.975
o \dt dt
-8.000
0.002 T— -
The first term accounts for the fact.that the. density matrix (ina mov- _ __ﬁ_)___— -
ing AO basis) changes as a function of time (the so-called orbital S 0.001 1 T T T
response); the second term accounts for the fact that the AO basis < . Lt : -
itself changes as a function of time. For the ideal case of an H-atom A 0.000 : Lot = <Pe>aw
with the electron in a 1s orbital, the first term would be zero while V —0.001 1 I - :Dij_;““’
the second term would be nonzero. In view of this analysis, it is clear . « FDUHF
that our proposed phase-space electronic Hamiltonian captures all ~0.002% T T : p ; !

of the physics in the second term but not the physics in the first term
(to the lowest order). In practice, whenever the systems pass through
a crossing with another state, the %DV,J term will get larger, and we
will not capture such nonadiabatic effects.

In order to further probe how much of the electronic momen-
tum depends on nonadiabaticity, we have investigated the electronic
momentum as a function of bond distance for the case of LiH
molecule, a molecule where curve crossings are known to occur at
large separation. In Fig. 1, we plot the linear momentum calculated
with the phase-space restricted HF (blue solid line) and unrestricted
HF (red dashed line) approaches and with the FD approach with
restricted HF (gray solid line) and unrestricted HF (purple dotted

Bond length (Bohr)

FIG. 1. (a) RHF and UHF potential energy surfaces drawn with a cyan solid line
and a magenta dashed line, respectively. (b) The linear momentum calculated
with the phase-space restricted HF (blue solid line), phase-space unrestricted HF
(red dashed line), the FD restricted HF (gray solid line), and FD unrestricted (pur-
ple dotted line). The equilibrium bond distance is 3.0374 bohrs. The location of
the Coulson-Fischer point is shown by the black solid line, where the internal
nuclear motion changes the electronic wavefunction discontinuously so that the FD
approach predicts a spike in the linear momentum. The phase-space HF approach
does not take into account the orbital response to the nuclear motion and yields a
smoother prediction in this region. In this figure, we have set P, = 1.8 a.u. (i.e.,
vy = 0.001 a.u.).
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(phase-space vs finite difference) strongly disagree—but otherwise,
they are in the same order of magnitude.

Next, let us compare the angular momentum calculated with
the phase-space approach and the finite difference approach accord-
ing to Eq. (64). In Table III, we show the angular momentum
computed with both approaches for molecules at both the equilib-
rium and stretched geometries. The bond lengths for the stretched
geometry were 8 bohrs. All of the molecules are placed with their
center of mass at the origin and are aligned along the x—axis. A veloc-
ity corresponding to a rigid rotation around the z—axis was applied.
For the diatomic molecules, this velocity corresponded to a rota-
tion of the whole molecule by 0.05° per time step (1 a.u.). For the
polyatomic molecules, a smaller velocity was chosen such that the
total rotational kinetic energy corresponded to room-temperature
thermal motion; as above, for the FD calculations, we set the time
step to be 1 a.u. For the equilibrium geometries, we find the angular
momentum calculated with the phase-space and the finite-difference
approaches are about the same magnitude for reasonably sized basis
sets. This agreement improves for the stretched geometry, which
makes sense given the assumptions in Eq. (64). After all, we assumed
there that the angle of the electronic density in the xy plane was cen-
tered mostly around 6 = 0 and 6 = 7 and if we compare stretched
vs equilibrium geometries, we find that the electronic density cen-
tered around the origin is much less in the former (rather than later)
geometries. The results of the phase-space approach in Table I1I use
I'=T"+T". In Table VI in Appendix C, we further show that the
contribution of T’ can be about the same or one magnitude smaller
than the contribution of I"".

V. DISCUSSION: SEMI-LOCALITY OF I’

As discussed above [as well as in Ref. 30 and the compan-
ion paper (Ref. 25)], the ERF term I cannot be made strictly
local—unlike the ETF term I'. To that end, in Eq. (47), we intro-
duced a parameter w to control the locality of T”’. Now, the results
in Tables 1T and III are not very sensitive to the choice of parameter
w. One might wonder: does this insensitively imply that w is not
of practical importance? Or is the insensitivity perhaps just a con-
sequence of the fact that we modeled small molecules exclusively in
the tables above. To prove that the former is false and the latter is
correct, i.e., that semi-locality of "' is indeed crucial for a physically
meaningful effect, in this section, we will work with simple numeri-
cal examples illustrating how and why maintaining size consistency
is essential.

Let us consider one rigidly rotating LiH molecule (studied in
Table III) at the origin and add a second LiH molecule around
~35 bohrs away (see Appendix B for the geometry of this LiH
dimer). One expects that the second LiH molecule, located far away,
should not affect the angular momentum resulting from the rigid
rotation of the original LiH molecule. In Table 1V, we list (LZ)
values for the original LiH molecule as calculated either when the
molecule is isolated (same data as from Tables III and VI) or in
the presence of second LiH molecule. We present data from both
w =0 (corresponding to no locality) and w = 0.3 (corresponding
to semi-locality) calculations. Note that the results calculated with
semi-locality (w = 0.3) match with the (LZ) calculated for the sin-
gle LiH system, indicating that the second LiH molecule far away
correctly has negligible impact on the (LZ) values. By contrast,
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without any locality constraint (w = 0), the (£Z) values are different
(incorrectly).

As a side note, in Table 'V, we also list the (Lﬁ) values as calcu-
lated with only the ETF term I' = I". Here, the single and double LiH
systems yield the same exact expectation values as one should expect
from size consistency—again because I" is strictly local. That being
said, in Table IV, we find that the results with w = 0 for the double
LiH case are very similar to those with I’ alone; clearly, the I con-
tribution to (£Z) values becomes too small if one does not enforce
locality on the ERF matrix elements.

VI. DISCUSSION: IMPLICATIONS FOR NONADIABATIC
DYNAMICS

The theory and results above present a reasonably com-
pelling argument that, in the future, one can improve upon
Born-Oppenheimer dynamics simply by working with a phase-
space electronic Hamiltonian that depends on both nuclear position
and momentum. Admittedly, the data gathered here are still limited.
We have checked for the electronic linear momentum with regard to
internal motion, but we have not yet checked for the electronic angu-
lar momentum with regard to internal motion (only with regard to
rigid motion). Checking for internal motion will require a large basis
and an exact full configuration interaction (FCI) calculation in order
to evaluate the exact angular momentum through the exact sum
over states expansion in Eq. (53). Such a daunting task will probably
be necessary in the future. Nevertheless, notwithstanding its limited
nature, the data gathered so far are quite encouraging and have the
potential to open up new areas of study.®’

Obviously, launching dynamical simulations in the near future
will be the next logical step. To that end, note first that the
I'-couplings are one-electron operators such that diagonalizing the
resulting phase-space electronic Hamiltonian should require a triv-
ial added cost. The same cost analysis holds for the gradients of
this phase-space electronic Hamiltonian, such that running ab initio
dynamics should be readily possible. Moreover, one can imagine
running both single surface dynamics (analogous to BO dynamics)
as well as nonadiabatic surface hopping dynamics. In the spirit of
Ref. 16, we can be confident that all such dynamics will both pre-
dict nonzero electronic angular momentum while also conserving
the total angular momentum. To date, the only semiclassical non-
adiabatic algorithm for simulating such dynamics has been through
the exact factorization approach’’ (which is another promising
approach but still under development’" 7).

Another obvious target of the current research is the calcula-
tion of vibrational circular dichroism (VCD) spectraf' 7 Indeed,
the inability of standard BO theory to calculate VCD spectra stimu-
lated the original work of Nafie,"””"”*”’ and now many others,”’
to go beyond BO theory and construct the relevant matrix ele-
ments (with electronic angular momentum along the ground state)
that allowed for a nonzero vibrational rotatory strength. While the
present phase-space approach has many similarities with the nuclear
velocity perturbation (NVP) approach in Refs. 20 and 87-89, it
is worth noting that with a phase-space electronic Hamiltonian,
apparently, one can calculate a nonzero rotatory strength without
doing a double response theory (albeit at the cost of ignoring orbital
response). Thus, the present approach would appear to be a natural
starting point for VCD calculations in the future.”
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Although not addressed above, it is crucial to emphasize that
all of the theories above are generalized to include spin degrees of
freedom. In such a case, as discussed in the Conclusion and Out-
look section in Ref. 25, one needs only modify the form of T to
include spin degrees of freedom, and the total angular momen-
tum is conserved (without explicitly including a Berry force). In
recent years, there has been an explosion of interest in coupled
nuclear-electronic-spin motion, highlighted by the possibility that
nuclear motion (and chiral phonons) may yield new insight into
the chiral-induced spin selectivity (CISS) effect,” " whereby elec-
tronic motion through molecular systems shows clear signs of spin
preference. Beyond CISS, one can also imagine running similar
dynamics to explore spin polarization in intersystem crossing more
generally,”"'"

Finally, beyond dynamics, one can envision that because the
chemistry and physics communities are less experienced with phase-
space Hamiltonians than with standard electronic Hamiltonians,
new tools will be needed in the future. From a bird’s eye view, as
far as the electrons are concerned, a phase-space electronic Hamilto-
nian breaks time-reversal symmetry and is equivalent to introducing
a fluctuating magnetic field, and thus, advanced statistical mechan-
ics sampling methods will be needed. If there are spin degrees of
freedom, these statistical mechanics methods will need to be com-
patible with closely spaced, nearly, or fully degenerate electronic
states. Finally, the problems will be only richer if we include explicit
magnetic fields'”' ™" as well.

At the end of the day, once the computational tools have been
built, there is the potential to use the current phase-space approach
s0 as to generalize the well-known Marcus parabolas'”"'"” to include
spin degrees of freedom and to study how spin affects electron
transfer and curve crossings in a manner which conserves angu-
lar momentum. This approach should allow us to explore very new
physics involving the flow of angular momentum between nuclear,
electronic, and spin degrees of freedom.

Vil. SUMMARY

In this paper, we have proposed a phase-space electronic
Hamiltonian Hps(X,P) with an effective one-electron operator
I'yy that couples electronic motion to the nuclear momentum P.
Our ansatz is that one can build the I'-couplings using previously
derived electron-translation and electron-rotation factors. These
matrix elements satisfy Eqs. (18)-(21") so that, by including the
I' - P term, one naturally conserves the total linear and angular
momentum, allowing the electronic and nuclear degrees of free-
dom to exchange linear and angular momentum. Moreover, our
initial data suggest that, for this choice of T, one can qualitatively
recover the correct electronic linear momentum in agreement with
Nafie’s theory, as well as the correct electronic angular momen-
tum (albeit for the case of rigid motion), which represent important
post-Born-Oppenheimer benchmarks.

Looking forward, because TI,, is a one-electron operator,
diagonalizing Hps(X, P) requires the same computational cost as
solving a standard electronic Hamiltonian H,(X) as far as the
electronic structure is concerned. Thus, the phase-space elec-
tronic approach proposed here offers a physically meaningful as
well as computationally practical framework for recovering cou-
pled nonadiabatic nuclear-electronic-spin dynamics, going beyond

ARTICLE pubs.aip.org/aipl/jcp

electrostatic studies of non-Born-Oppenheimer dynamic and
establishing a crucial link between the chemical dynamics and
spintronic problems.
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APPENDIX A: ROTATIONS OF ATOMIC ORBITAL
MATRIX ELEMENTS

1. Overview

In this appendix, we will derive the fundamental (intuitive)
rules that govern how the one and two electron operators transform
under rotation, as well as how the linear and angular momen-
tum transform. Let R be a rotational operator in Cartesian xyz
space that rotates around the axis &/|8| by an amount |§|: R
= exp (—7 ¥y L*0a). Let |vp) be a basis function on atomic center B
and let |95) be a rotation of that basis function around center B, |vg)
= exp (— 43, L*84)|vs), where

; , 9 . "
L = —ihY eapy(rp - Xig) 55 = Le - Y ey Xpph. (A1)
By r By

We will prove
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ha (RXo) = huw(Xo), (A2)
pav(RXo) = Rpuv(Xo), (A3)
Jur(RXo) = R,(Xo), (A4)
36 (RX0) = Mo (Xo). (A5)

These relationships are broadly important both for the results
in this manuscript as well as those in Ref. 25. We will also prove
below the equivalence of Egs. (21) and (21").

2. Overview of one-electron operator atomic orbital
matrix elements

Let us write the matrix elements for general one-electron oper-
ator @' in atom-centered basis as O}WB (Xo), where the basis
function y is centered on atom A and v is centered on atom
B. We imagine performing two rotations: (i) first, we rotate the
whole molecule RX, and (ii) second, we rotate the basis functions
around their atomic centers. We wish to evaluate the first-order
change of the matrix element of the general one-electron operator

MAVB (RXo),

((8) = O3, (RXo) = Oy, (X0) — O(8). (A6)

We will compute the contributions of the two rotations above to
((0) separately.

1. If we ignore the change in orbitals, the first order change
in the matrix elements due to the molecular rotation
Rx1-13 L%, is

(RX,) - Z 8 "“B (L sXcp)

Ctxﬁy

801 N
= 2 duegraXep gyt (A7)
Capy

I‘AVE (XO) ~

HA VB

Here, we have used the relationship Lgy = —iheaﬁy. We
can further expand the nuclear derivatives of the one-electron
matrix elements into three components,

@1|VB)5AC+(HA|@1‘

904, | 00!
3ch T\ 8ch

3] 0
. (A
+ <8XA,,HA Xy VB)5BC (A8)

2. Next, we compute the first-order change due to rotating the
atomic basis functions around their centers. Considering the
first order change in 8, for |vg) for example, we find

[95) (1 -y tf“aa)m). (A9)

If we plug in Eq. (A1), we can evaluate the contribution to the
first-order change,

ARTICLE pubs.aip.org/aipl/jcp

(RXo) ~ Oy, (RX0)

.“A Vg Have

3T 5“(<“A|@1|ﬁ?vs> -

> eaﬂyXBﬁ<HA@1|ﬁZvB)). (A10)
By

Now, if we also add in the first order change in J, for (ga|, we
recover

O;A% (RXO) - O‘AIAAVB (RXO) (All)

Z capy (Xap(plpa| O vs)
By

Iy

o

(ual[ O, L2 Ive)

7XB/5(‘MA| @ 1|13ZVB>):|-

Finally, if we use the relationship (p) —ihV})|vs) =0, the

second term in Eq. (A11) becomes

3 ({0 )~ oo O )
ay

Oua
= =2 Sacapy (XA{5< X

Ovs
Z ‘0 |VB>+XBﬁ(/4A|O 8X >) (AlZ)

Finally, adding these two contributions together and noting that the
last two terms in Eq. (A8) cancel with the terms in Eq. (A12), we find

((8) = Z 6a€aByXC,B<P‘A|
Capy

\VB —*25 (uallO " L5 T[vs).
(A13)

Equation (A13) is general and allows us to evaluate the first-order
changes under rotation for different one-electron matrix elements.

a. One-electron core Hamiltonian matrix elements
[proving Eq. (A2)]

Due to the isotropy of the space, the following commutator is
zero:

[fz,llﬁ‘ + i;‘] -0, (A14)

Plugging this commutation relation into Eq. (A13), the second term
on the RHS becomes
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%Z Supal [y 19 |vs) = éz Salpa|[hL2]|vs)

== Z StxgaﬁyXCﬂ<,MA| |‘VB) (A15)
Capy

Plugging Eq. (A15) back to Eq. (A13), we see that two terms
cancel with each other, thus proving Eq. (A2).

b. Electronic linear momentum matrix elements
[proving Eq. (A3)]

We begin by evaluating the commutator,
[phLe] =il epaypl- (A16)
¥

Plugging this commutation relation in Eq. (A13), we find

$(8) = Y Suenay{palpllve), (A17)
ay

which is the first-order change corresponding to the RHS of

c. Ju,vy matrix elements [proving Eq. (A4)]

We first review the definition of the J/,,, matrix elements,

i . .
T = =g (al (& + L") vs). (A18)

Now, we evaluate the commutation relation,

[ﬁ‘:ﬂ)ﬁ‘;] = |:£Z - Z €r]ﬂyXAﬂﬁZ>lAlg:|
By

=ihY egayl) —ihY €45y Xap€yarPe- (A19)
y Byx

Plugging this commutation relation in Eq. (A13), we find

Z Sucray

{8) = 322 SucugXagenm i plm) -
afyx

x (ualLtlvs) + Z Sa€npy Xapeyar(palpelvs).  (A20)

This is the first order change for the term —ﬁR(‘uAU:ﬂvB)‘ One can

obtain the equivalent result for the — - R(u4|L?|vs) term. Hence, we
have proven Eq. (A4).

3. Two-electron operator atomic orbital matrix
elements [proving Eq. (A5)]

The evaluation of the first-order changes in the two-electron
operator matrix elements upon rotation is very similar to the
approach above. Given a general two-electron operator O 2, the first
order changes {(8) to the matrix elements upon rotation can be
evaluated as follows:

e The first order change due to the molecular rotation
R~1- ,Z L%8, [similar to Eq. (A7)] is

ARTICLE pubs.aip.org/aipljcp
O[ZMVMCGD (RXO) - f’AVBACUD (XO)

—i 80 vpAco;

N Y Ba AR (LysXp) (A21)
h Qafy GXQ),2

PYo

= SaepyXop—L2rco (A22)

Q%:ﬁy L oy

We can further expand the nuclear derivatives of the two-
electron matrix elements into five components,

8(9”“3)\(@ ~ |8(’A)2‘/1 o) + 1o} y
78XQ)/ = ({AVB 9Xq CcOD aXAyMA B

X (’A)ZMcGD)(SAG + <[4A

(;)ZMCUD)(S\BG

VB

09Xz,

A 0
+ (#AVB|02‘(6XCY/\C)GD)5CG

A

02

+ (uavs

0
Ac=—0p }Opc. A23
CBXDy 61)) DG (A23)

e Similar to Eq. (A11), the first-order change due to the basis
functions rotating around their centers can be written as

»
faVpAcop

2
- OyAvBACUD (XO)

_l . .
~ gZ Sulpavs|[ O, L, ]Acop)

- éZ Outapy[ Xag(phn(uave)| O*Acop)
afyn

7X3ﬁ<[/lAVB|(;)ZLIAJZ,”(AcO'D))]. (A24)

Here, the letter n represents the electron number.
For a two-electron operator, #n can be either electron 1 or
2. When n refers to electron 1, ig acts on y, or Ac. We note
that the long second term on the RHS of Eq. (A24) cancels
with the terms that involve nuclear derivatives of the basis
functions in Eq. (A23). Hence, the first order change in the
two-electron operator upon rotation is

A2
{8 => 5a€ﬁanQﬁ(,uAvB\ |/\CGD)
Qapy
- gz 5a(#AVB|[@2>ﬁ?,n]I/\cUD). (A25)

a. My, 1o, Matrix elements

From the form of the two-electron interaction operator Pl :

|

we can easily deduce that the first term in Eq. (A25) is zero. For the

second term in Eq. (A25), note that

F1 X p1+ 2 x P, — (A26)

T —i‘2|

Hence, the second term in Eq. (A25) is also zero. Hence, we have

proven Eq. (A5).
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APPENDIX B: CARTESIAN COORDINATES IN BOHR

1. Equilibrium geometries

ARTICLE
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The equilibrium geometries for the molecules investigated in Tables [-VI were optimized with restricted Hartree-Fock and a cc-pVTZ

basis set.
[ ] HZ
H —0.693 827279423610 0.000 000 000 000 000 0.000 000 000 000 000
H 0.693 827279423610 0.000 000 000 000 000 0.000 000 000 000 000
e LiH
Li —0.381 507 444 748 606 0.000 000 000 000 000 0.000 000 000 000 000
H 2.655 860841963 647 0.000 000 000 000 000 0.000 000 000 000 000
¢ HCN
H —3.023 887918951979 0.000 000 000 000 000 0.000 000 000 000 000
C —1.027 314918951979 0.000 000 000 000 000 0.000 000 000 000 000
N 1.097 998 081 048 021 0.000 000 000 000 000 0.000 000 000 000 000
L] HzO
H 1.777 459 680 682 990 0.000 000 000 000 000 0.000 000 000 000 000
(@] 0.000 000 000 000 000 0.000 000 000 000 000 0.000 000 000 000 000
H —0.489 811 956 048 840 —-1.708 638 980 055 550 0.000 000 000 000 000
L[] C4H2
H —5.534109 801 000 000 0.000 000 000 000 000 0.000 000 000 000 000
C —3.542 659 862 000 000 0.000 000 000 000 000 0.000 000 000 000 000
C —1.308 625 798 000 000 0.000 000 000 000 000 0.000 000 000 000 000
C 1.308 625 798 000 000 0.000 000 000 000 000 0.000 000 000 000 000
C 3.542 659 862 000 000 0.000 000 000 000 000 0.000 000 000 000 000
H 5.534109 801 000 000 0.000 000 000 000 000 0.000 000 000 000 000
2. LiH dimer
Li —0.381 507 444 748 606 0.000 000 000 000 000 0.000 000 000 000 000
H 2.655 860 841963 647 0.000 000 000 000 000 0.000 000 000 000 000
Li 35.000 000 000 000 00 —0.381 507 444 748 606 0.000 000 000 000 000
H 35.000 000 000 000 00 2.655 860841963 647 0.000 000 000 000 000
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TABLE V. The electronic linear momentum (h/ag) calculated with the phase-space Hamiltonian approach with two choices of I the electron translation factor (I') and the
electron rotation factor (I’"). The velocity used here corresponds to stretching one H atom along the x axis of the water molecule.

STO-3G DZ aDZ TZ aTZ Qz aQZ
(p%) r 357x 107 7.11x107* 6.67x107* 2.75%x 107 513x 107 2.03x107* 7.74% 107
I’ 121x107° 4.18x107° -9.90x107° 6.20x107° ~1.52x107° 7.40x 107° 7.38x107°
(p?) r 582x107°  —686x107°  —420x107°  -1.08x107!  -121x107°  -1.96x107! = —7.21x107°
I’ 9.15x107° 3.15x107° —-7.46x107° 4.67x107° -1.17x107° —557x107° 4.93x107°

TABLE VL. The electronic angular momentum (Lg) (h) calculated with the phase-space Hamiltonian approach with the electron translation factor (I'”) or the electron rotation

factor (T”") only. The velocity used here corresponds to a rigid rotation around the z axis of the linear molecules aligned at the x axis.

STO-3G DZ aDZ TZ aTZ QzZ aQZ
H, I 0.00 1.37x107* 3.26x107* 2.40% 107* 247 x107* 2.88x107* 2.07x107*
I’ 0.00 —840x10™°  -251x10"° -1.68x107* -1.75x107* -2.15x10™* -1.34x107*
Stretched H, I 0.00 6.93x107° 2.33%x 1072 1.35%x 1072 2.46x 1072 1.72x 1072 2.50x 1072
I’ 0.00 -1.70x10™°  —6.68x107* -9.67x10° -9.85x107* —2.02x107* -1.15x107°
LiH d 9.11 x 107* 3501073 6.22x107° 493x107° 7.55% 1073 577 %1073 6.85% 1073
I 4.83 x 1073 5.89x 1073 447 %1073 5.73x 1073 3.64x1073 534x 1073 451x1073
HCN r 333x107* 1.96x 1073 2.41x 1073 2.71x 1073 2.66x107° 2.98x 1073 2.64% 1073
I 2.14x 1073 1.53x 107> 1.28x 1073 127 %1073 1.40 x 1073 1.27x 1073 1.63x 1073
C4H, r 5.78 x 107 8.17x 1073 1.18 x 1072 9.74% 1073 9.76 x 10~° 1.07 x 1072 1.07 x 1072
I’ 9.60 x 107 -6.76x107* -—2.97x107> -2.90x107° 5.58 x 10 240 x 107 3.57x107%
APPENDIX C: ETF AND ERF CONTRIBUTIONS REFERENCES

1. Linear momentum when stretching an H atom
of a water molecule

For all the molecules studied in Table II, the contributions of
I are non-zero only for the water molecule. In Table V, we show
the linear momentum as calculated with either I’ or I”’ exclusively.
Here, the water molecule is placed in the xy plane with one of the
O-H bonds aligned along the x axis. Moving the H atom away from
the O atom along the x axis puts the majority of the linear momen-
tum in the x direction ((p;)) and a small degree in the y direction
({(p2)). Comparing the contributions from the two components of
the T coupling (I” vs I"’), we note that the contribution from I’ to
the linear momentum is much smaller (by an order of magnitude)
as compared to the contribution from I".

2. Angular momentum of rigid rotations of linear
molecules

In this section, we provide data regarding the angular momen-
tum as calculated using either I” and T exclusively. As shown in
Table VI, depending on the molecules, for the equilibrium geome-
tries, the angular momentum calculated with only T” can be the
same magnitude or one magnitude smaller than what is found when
using I' alone. At the geometry for which the diatomic bond lengths
are stretched to 8 bohrs, the contribution from I” clearly dominates
the contribution from I'”’.
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